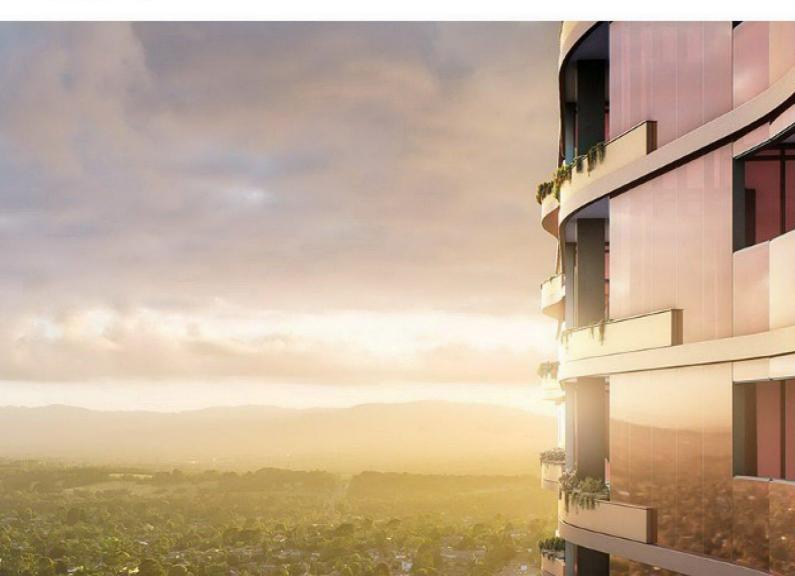


ADVERTISED COPY

Axxess Corporate Park


Sustainability Management Plan

Prepared for: Dexus

Project No: MEL3438

Date: 13 December 2022

Revision: 01

Project: Axxess Corporate Park

Location: 1-31 Gilby Road

Mount Waverly, VIC 3149

Prepared by: ADP Consulting Pty Ltd

Level 13/55 Collins Street, Melbourne VIC 3000

Project No: MEL3438

Revision: 01

Date: 13 December 2022

Rev	Date	Comment	Author	Signature	Technical Review	Signature	Authorisa- tion & QA	Signature
00	30/09/2022	Draft	Navin Kumar Sridhar	NS	Tom Miers	TM	Tom Miers	TM
01	13/12/2022		Navin Kumar Sridhar	NS	Tom Miers	TM	Tom Miers	TM

P	roj	ect	l eam	1

Client / Principal Dexus
Architect Concept

Sustainability Consultant ADP Consulting

Contents

Exec	cutive Summary	3
1.	Introduction	4
1.1	Site Overview	4
1.2	Documentation	
1.3	Statutory Context	4
2.	ESD Strategy	8
2.1	Management	8
2.2	Water	9
2.3	Energy	10
2.4	Stormwater	11
2.5	Indoor Environment Quality	12
2.6	Transport	
2.7	Waste	14
2.8	Urban Ecology	15
3.	BESS Assessment Summary	16

Figures

No table of figures entries found.

Tables

Table 1: ESD information required	6
Table 2: Actions for Building Management	8
Table 3: Actions to maximise Water Efficiency	9
Table 4: Actions to maximise Energy Efficiency	10
Table 5: Actions to achieve WSUD	11
Table 6: Actions to maximise Indoor Environment Quality	12
Table 7: Actions to maximise Sustainable Transport	13
Table 8: Actions for Sustainable Material Selection	14
Table 9: Actions for Land Use and Ecology	15
Table 10: BESS Summary	16

Executive Summary

ADP Consulting has been commissioned to provide a Sustainable Management Plan (SMP) for the proposed development at 1-31 Gilby Road, Mount Waverley VIC 3149.

The aim of the SMP is to identify and convey the key sustainability opportunities embraced in the design and provide the Responsible Planning Authority with a clear indication of how the development integrates key ESD initiatives.

ADP Consulting benchmarked the design's potential ESD performance under each of the 10 key Sustainable Building categories following the Sustainable Management Plan in the Planning Process (SDAPP). The categories that have been assessed include Management, Water, Energy, Stormwater, Indoor Environment Quality (IEQ), Sustainable Transport, Waste, Urban Ecology, and Innovation.

The proposed development incorporates several ESD initiatives and currently targets 58 points out of 100 in BESS (refer to BESS Summary in Table 10), which equates to Best Practice.

We understand this will satisfy Council's desired performance of development within its boundaries.

Introduction

This report provides an overview of the Environmentally Sustainable Development (ESD) strategy for the proposed warehouse development at 1-31 Gilby Road, Mount Waverley VIC 3149 within the municipal boundaries of the City of Monash. The project has 2 warehouse buildings with 18 warehouses and offices across 3 storeys.

The objective of this report is to describe how best practice ESD will be incorporated in the development, including targets and proposed design approaches, and to demonstrate that the development meets or exceeds the standards required by the City of Monash Planning Scheme, specifically the requirement to achieve the design potential to a minimum +50% BESS score.

1.1 Site Overview

The site is located at 1-31 Gilby Road, Mount Waverley VIC 3149. The proposed development is comprised of the following area types:

- Warehouse
- > Office
- Multi-Level car park

1.2 Documentation

This report has been informed by Architectural drawings produced by Concept Architects drawings dated 09/12/2022.

1.3 Statutory Context

1.3.1 City of Monash

The site is situated within Mount Waverly in the municipal boundaries of the City of Monash. The City of Monash has Policy and objectives relating to ESD which are contained in clause 22.13, Environmentally Sustainable Development Policy, of the planning scheme. These policies and objectives have been taken into consideration throughout this assessment and in our advice given to the applicant of 1-31 Gilby Road, Mount Waverley development.

22.13-1 Policy Basis

Monash City Council is committed to make Monash a more sustainable place to live, work and play. Critical to achieving this commitment is for development to meet appropriate environmental design standards. This policy aims to integrate environmental sustainability into land use planning, new developments, and redevelopment of existing infrastructure.

This policy provides a framework for early consideration of environmental sustainability at the building design stage to achieve the following efficiencies and benefits:

- > Easier compliance with building requirements through passive design
- > Reduction of costs over the life of the building
- > Improved affordability over the longer term through reduced running costs
- > Improved amenity and liveability
- > More environmentally sustainable urban form and
- > Integrated water management

If environmentally sustainable design is not considered at the time of planning approval, the ability to achieve environmentally sustainable development may be compromised by the time these matters are considered as part of a building approval. In addition, there may be difficulties or extra costs associated with retrofitting the development to implement environmentally sustainable design principles.

This policy does not prescribe performance outcomes. The policy enables the provision of information and provides decision guidelines which will assist in the assessment of whether development meets environmentally sustainable development objectives.

This policy complements a range of non-statutory measures aimed at encouraging environmentally sustainable development. These measures include educating residents and applicants, assisting applicants to use Environmentally Sustainable Development (ESD) tools, leading by example with Council projects, promotion of exemplary private projects and promotion of use of materials with favourable life cycle impacts.

22.13-2 Objectives

Energy efficiency

- > To improve the efficient use of energy, by ensuring development demonstrates design potential for ESD initiatives at the planning stage.
- > To reduce total operating greenhouse gas emissions.
- > To reduce energy peak demand through design measures (e.g. appropriate building orientation, shading to glazed surfaces, optimise glazing to exposed surfaces, space allocation for solar panels and external heating and cooling systems).

Water resources

- To improve water efficiency.
- > To reduce total operating potable water use.
- > To encourage the collection and reuse of stormwater.
- > To encourage the appropriate use of alternative water sources (e.g. greywater).

Indoor Environment Quality

- To achieve a healthy indoor environment quality for the wellbeing of building occupants, including the provision of fresh air intake, cross ventilation, and natural daylight.
- > To achieve thermal comfort levels with minimised need for mechanical heating, ventilation and cooling.
- To reduce indoor air pollutants by encouraging use of materials with low toxic chemicals.

- To reduce reliance on mechanical heating, ventilation, cooling, and lighting systems.
- > To minimise noise levels and noise transfer within and between buildings and associated external areas.

Stormwater Management

- > To reduce the impact of stormwater run-off.
- > To improve the water quality of stormwater run-off.
- To achieve best practice stormwater quality outcomes.
- > To incorporate the use of water sensitive urban design, including stormwater re-use.

Transport

- > To ensure that the built environment is designed to promote the use of walking, cycling and public transport, in that order.
- > To minimise car dependency.
- > To promote the use of low emissions vehicle technologies and supporting infrastructure.

Waste management

- > To promote waste avoidance, reuse and recycling during the design, construction, and operation stages of development.
- > To ensure durability and long-term reusability of building materials.
- > To ensure sufficient space is allocated for future changes in waste management needs, including (Where possible) composting and green waste facilities.

Urban Ecology

- > To protect and enhance biodiversity within the municipality.
- > To provide environmentally sustainable landscapes and natural habitats, and minimise the urban heat island effect.
- To encourage the retention of significant trees.
- > To encourage the planting of indigenous vegetation
- > To encourage the provision of space for productive gardens, particularly in larger residential developments.

22.13-3 Policy

It is policy that applications for the types of development listed in Table 1 be accompanied by information which demonstrates how relevant policy objectives will be achieved.

Table 1: ESD information required

Type of Development	Application Requirements	Example Tools
Development of a non-residential building with a gross floor area of more than 1000m ²	Sustainability Management Plan (SMP)	> Green Star> BESS> MUSIC> STORM

Creating great environments with great people

22.13-4 Application Requirements

An application must be accompanied by either a Sustainable Design Assessment or a Sustainability Management Plan as specified in Table 1, as appropriate. A Sustainable Management Plan should:

- > provide a detailed assessment of the development. It may use relevant tools from the tools listed in the table, or an alternative assessment approach to the satisfaction of the responsible authority and
- > identify achievable environmental performance outcomes having regard to the objectives of this policy (as appropriate) and
- > demonstrate that the building has the design potential to achieve the relevant environmental performance outcomes, having regard to the site's opportunities and constraints and
- > document how the performance outcomes can be achieved.

Various assessment tools have been listed in Table 1 which may be used to assess how the proposed development addresses the objectives of this policy, as appropriate.

ESD Strategy

The following section provides details of the ESD initiatives following the Sustainable Management Plan in the Planning Process (SDAPP) which have been deemed potentially suitable for the project. These form the overall benchmarking assessment of the building. These initiatives are currently adopted or under consideration; best endeavours will be made to include these in the fully developed design.

2.1 Management

The SDAPP 'Management' category encourages and rewards the adoption of practices and processes that enable and support best practice sustainability outcomes throughout the different phases of a project's design, construction, and its ongoing operation.

Throughout the 'Management' category, SDAPP intends to improve the sustainability performance of a project by influencing areas where decision-making is critical. This category rewards the implementation of processes and strategies that support positive sustainability outcomes during construction. The category also promotes practices that ensure a project will be used to its optimum operational potential.

The 'Management' category rewards projects that achieve the following outcomes:

- > Coordinated approaches.
- > Commitment to implementation
- > Sustainable cultures and behaviours

Table 2: Actions for Building Management

Action	Response Strategies
Pre-Application Meeting	 ESD professional has been engaged to provide sustainability advice from schematic design to construction The ESD professional has been involved in a pre-application meeting with Council
Thermal Performance	Preliminary Deemed to Satisfy with a greater than 10% improvement against NCC2019 or JV3 thermal modelling will be undertaken for the final SMP report in accordance with Section J of the NCC2019.
Metering	Utility meters provided to all individual tenancies.
Building Users Guide	 A Building User Guide will be produced and issued to building occupants and building managers. The Building Users' Guide may be a simple booklet and/or a combination of interpretative signage throughout the building with the purpose to facilitate more sustainable behaviour by building occupants.
BESS Score	100%

2.2 Water

The SDAPP 'Water' category aims to encourage and reward initiatives that reduce the consumption of potable water through measures such as the incorporation of water efficient fixtures and building systems and water re-use.

Reductions in operational water consumption may be achieved through maximisation of water-efficiency within a project, as well as through the utilisation of reclaimed water sources.

The 'Water' category rewards projects that achieve the following outcomes:

- > The selection of equipment that is more water efficient than comparable standard practice equivalents.
- > The use of water-efficient supplementary equipment.
- > The selection of water-efficient toilets taps and showers.

Table 3: Actions to maximise Water Efficiency

Action	Response Strategies
Efficient Fixtures and Fittings	> All sanitary fixtures and water appliances shall have the WELS rating stated below:
	Showerhead – 4 star WELS (>=6.0 but <=7.5)
	- Kitchen taps - 6 star
	Bathroom taps – 6 starUrinals – 6 star
	- WC - 4 star
Rainwater Harvesting and	East Warehouse
Reuse	> 24,860m² of roof catchment area
	> Storage in a 40kL rainwater tank
	 Connection to all East Warehouse toilets, urinals, irrigation and washdown areas
	West Warehouse
	> 23,184m² of roof catchment area
	> Storage in a 40kL rainwater tank
	Connection to all West Warehouse toilets, urinals, irrigation and washdown areas
Water Efficient Landscaping	Species planted on site to be native and drought tolerant, and do not require ongoing watering after an initial period of establishment.
Fire Protection System Test Water Reuse	At least 80% of the annual fire protection system test water will be captured in the fire tanks and reused.
BESS Score	57%

2.3 Energy

The SDAPP 'Energy' category aims to reward projects that are designed and constructed to reduce their overall operational energy consumption below that of a comparable standard practice building. Such reductions are directly related to reduced greenhouse gas emissions, lower overall energy demand as well as reductions in operating costs for building owners and occupants.

Through the 'Energy' category, SDAPP aims to ensure reductions in greenhouse gas emissions by facilitating efficient energy usage and encouraging the utilisation of energy generated by low-emission sources.

The 'Energy' category rewards projects that achieve the following outcomes:

- > The implementation of well-designed systems, aimed at lower operating emissions.
- > The selection of high efficiency equipment over less energy efficient alternatives.
- > The implementation of well-designed and zoned lighting that is energy efficient and appropriate for a space's use.
- > The use of efficient supplementary equipment; and
- > The procurement of zero carbon and low carbon energy sources.

Table 4: Actions to maximise Energy Efficiency

Action	Response Strategies
Renewable Energy Systems	> A 99kW PV system will be installed on the roof.
Thermal Performance non- residential	Preliminary Deemed to Satisfy with a greater than 10% improvement against NCC2019 or JV3 thermal modelling will be undertaken for the final SMP report in accordance with Section J of the NCC2019.
Internal Lighting	The internal lighting maximum illumination power density must meet the requirements in Table J6.2a of the NCC2019.
	> All lighting shall be high-efficiency LED.
Electrification	> The development is all-electric.
BESS Score	72%

2.4 Stormwater

The SDAPP 'Stormwater' category aims to ensure projects are responsibly treating stormwater to reduce the amount of polluted stormwater run-off entering local waterways such as rivers, streams, wetlands, and bays. This can be achieved by the following water sensitive urban design strategies (WSUD), rainwater tanks, raingardens, porous paving, and landscaping.

To demonstrate compliance, a score of 100% must be achieved using the MUSIC tool, demonstrating that the following has been achieved:

- Suspended solids 80% retention of typical urban load
- > Total Nitrogen 45% retention of typical urban load
- > Total Phosphorous 45% retention of typical urban load
- > Litter 70% reduction of typical urban load

Table 5: Actions to achieve WSUD

Action	Response Strategies
Stormwater Treatment	East Warehouse
	> 24,860m ² of roof catchment area
	> Storage in a 40kL rainwater tank
	> Connection to all East Warehouse toilets, urinals, irrigation and washdown areas
	West Warehouse
	> 23,184m² of roof catchment area
	> Storage in a 40kL rainwater tank
	> Connection to all West Warehouse toilets, urinals, irrigation and washdown areas.
	Surrounding Areas and Rainwater Tank Overflow
	> Stormwater directed to existing council underground drainage during mino overflow
	Overland flow will be conveyed through the site during major overflow. The flow path will be sized during detailed design.
	> Two raingardens (bioretention systems) will be used to treat runoff from all areas of the subject site.
	> The raingardens have been sized using MUSIC modelling. Refer Appendix B Stormwater Management Strategy for calculations and results.
BESS Score	100%

2.5 Indoor Environment Quality

The SDAPP 'Indoor Environment Quality' category aims to encourage and reward initiatives that enhance the comfort and well-being of occupants. The credits within this category address issues such as natural daylight, air quality and thermal comfort.

Through the 'Indoor Environment Quality' category, SDAPP aims to achieve sustainability performance improvements in a manner that also improves occupants' experience of the space. While it is possible to reduce a project's energy intensity by simply providing occupants with poor lighting quality for example, the 'Indoor Environment Quality' category recognises that buildings are designed for people and that reductions in energy use should never be made at the expense of the occupants' health and wellbeing.

By rewarding both energy efficiency and encouraging occupant well-being, the BESS rating system promotes and rewards a holistic approach to sustainability that results in multiple benefits.

The 'Indoor Environment Quality' category rewards projects that achieve the following outcomes:

- > Increased comfort and wellbeing
- > Reduced exposure to pollutants

Table 6: Actions to maximise Indoor Environment Quality

Action	Response Strategies
Daylight Access	At least 33% of regular use areas to achieve adequate BESS Daylight Standards. Refer Appendix C for Daylight summary.
Ventilation	> 100% of regular use areas to achieve effectively natural ventilation.
Air Quality	All paints, adhesives and sealants applied on-site as part of the proposed works shall meet the maximum Total Volatile Organic Compound (TVOC) limits outlined in Appendix D.
	All engineered wood products including particleboard, plywood, Medium Density Fibreboard (MDF), Laminated Veneer Lumber (LVL), High-Pressure Laminate (HPL), Compact Laminate and decorative overlaid wood panels used as part of the proposed works shall meet the Formaldehyde emission limits outlined in Appendix E.
BESS Score	58%

2.6 Transport

The SDAPP 'Transport' category aims to reward projects that facilitate a reduction of the dependency of occupants on private car use as an important means of reducing overall greenhouse gas emissions. The use of motor vehicles directly contributes to climate change in two ways – through the high amounts of energy required to produce cars and build and maintain supporting road transport infrastructure and services; and the direct emissions that result from car operations.

If reliance on individual motor vehicle transportation is to be reduced, it is necessary to maximise alternative transportation options. Rather than limiting access to private fossil fuel vehicles, the 'Transport' category aims to encourage and reward initiatives that reduce the need for their use. This may include initiatives that encourage the use of public transport options, cycling or walking, and the selection of sites that are close to local amenities.

The 'Transport' category rewards projects that achieve the following outcomes:

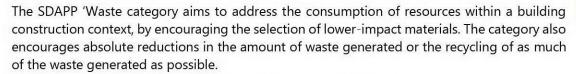

- > The selection of sites that have readily accessible public transport options.
- > The selection of sites within close proximity of a diversity of amenities.
- > The facilitation and encouragement of the use of alternative transport options, such as bicycles or electric vehicles.

Table 7: Actions to maximise Sustainable Transport

Action	Response Strategies
Electric Vehicle Charging	> At least one space will be provided with electric vehicle charging infrastructure
Motorbike parking	Minimum of 5% or 5 parking spaces are designed and labelled for motorbikes or mopeds/scooters.
BESS Score	37%

2.7 Waste

The 'Materials' category rewards projects that achieve the following outcomes:

- > Use of products and materials with lower impact.
- > Reduction in waste to landfill

Table 8: Actions for Sustainable Material Selection

Action	Response Strategies
Operational Waste – Convenience of recycling	Clearly labelled recycling bins to be provided wherever a general waste bin is located, to facilitated recycling.
Construction and Demolition Waste Recycling	> The project will recycle at least 70% of the construction and demolition waste.
BESS Score	33%

2.8 Urban Ecology

The SDAPP 'Land Use & Ecology' category aims to reduce the negative impacts on sites' ecological value because of urban development and reward projects that minimise harm and enhance the quality of local ecology.

The 'Land Use & Ecology' category rewards projects that achieve the following outcomes:

- > Site sustainability.
- > Reducing ecological impacts from occupied sites.

Table 9: Actions for Land Use and Ecology

Action	Response Strategies
Vegetation	> Approximately 8% of the site is covered in vegetation.
BESS Score	12%

BESS Assessment Summary

BESS provides a framework for benchmarking the ESD achievement of a building design. The tool includes credits under a range of categories which may be used to guide ESD and tally a score which corresponds to the following benchmarks:

- > +50% Best Practice
- > +70% Excellence

A BESS assessment has been completed for the development to provide a guide to the sustainability initiatives that will be implemented in the design.

In summary, the development achieves a total BESS score of 58 out of 100 (refer Table 11). This highlights the high commitment to sustainable development in the design of the building.

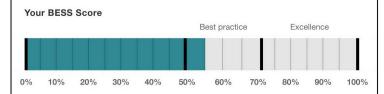
Table 10: BESS Summary

SDAPP Criteria	Score Achieved	
Management	100%	
Water	57%	
Energy	72%	
Stormwater	100%	
IEQ	58%	
Transport	37%	
Waste	33%	
Urban Ecology	12%	
BESS SCORE	58%	

Appendix A BESS Report

BESS Report

Built Environment Sustainability Scorecard



This BESS report outlines the sustainable design commitments of the proposed development at 1 Gilby Rd Mount Waverley VIC 3149. The BESS report and accompanying documents and evidence are submitted in response to the requirement for a Sustainable Design Assessment or Sustainability Management Plan at Monash City Council.

Note that where a Sustainability Management Plan is required, the BESS report must be accompanied by a report that further demonstrates the development's potential to achieve the relevant environmental performance outcomes and documents the means by which the performance outcomes can be achieved

Note: This is a DRAFT and not suitable for submission to council

58%

Project details

Address 1 Gilby Rd Mount Waverley VIC 3149

Project no E11078F1

BESS Version BESS-7

Site type Non-residential development

Account sustainabilityteam@adpconsulting.com.au

Application no.


 Site area
 60,870.00 m²

 Building floor area
 81,420.00 m²

Date 13 December 2022

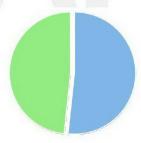
Software version 1.7.1-B.393

Buildings


Name	Height	Footprint	% of total footprint	
Warehouse East	3	24,854 m²	51%	
Warehouse West	3	23,232 m ²	48%	

Dwellings & Non Res Spaces

Non-Res Spaces


Name	Quantity	Area	Building	% of total area
Office	*	·		
East Main Office	9	280 m²	Warehouse East	3%
West Main Offices	9	280 m²	Warehouse West	3%
East Dock Office	9	50.0 m ²	Warehouse East	< 1%
West Dock Office	9	50.0 m ²	Warehouse West	< 1%
Total	36	5,940 m ²	7%	
Lab/Warehouse			10	
Warehouse East	1	40,980 m²	Warehouse East	50%
Warehouse West	1	34,500 m ²	Warehouse West	42%
Total	2	75,480 m²	92%	

Building composition

Warehouse East
 Warehouse West

Supporting information

Floorplans & elevation notes

Credit	Requirement	Response	Status
Management 3.2	Individual utility meters annotated	,	-

Credit	Requirement	Response	Status
Management 3.3	3.3 Common area submeters annotated		
Water 3.1	Water efficient garden annotated		
Energy 3.1	ergy 3.1 Carpark with natural ventilation or CO monitoring system		
nergy 4.2 Floor plans showing location of photovoltaic panels as described.			8
Stormwater 1.1 Location of any stormwater management systems used in STORM or MUSIC modelling (e.g. Rainwater tanks, raingarden, buffer strips)			2
Transport 2.1		-	
Transport 2.3	ransport 2.3 All nominated motorbicycle parking spaces		
Waste 2.2	/aste 2.2 Location of recycling facilities		
Urban Ecology 2.1	Vegetated areas		2

Supporting evidence

Credit	Requirement					Response	Status
Management 2.3a	Section J glaz	ing assessm	ent		W		- I
Management 2.3b	Preliminary me	Preliminary modelling report					- 19
Energy 1.1	Energy Report showing calculations of reference case and proposed buildings					-	
Energy 3.1	carbon monxi systems are re responsible fo	de monitorin equired for th r their impler	on of either the f g, describing how em to be fully in mentation throug the building life.	w these system tegrated and w	s will work, v no will be	vhat	
Energy 3.7		Provide a written description of the average lighting power density to be installed in the development and specify the lighting type(s) to be used.				-	
Energy 4.2	Specifi	f the sol		n(s).	\langle		
Stormwater 1.1	STORM rep.	//USIC	el		$-\lambda$		-
IEQ 1.4	\ short repor	ling a	ptions use	results ar	∌d.		-

Credit summ

Management Overall contribution 4.5%

Water Overall contribution 9.0%

	Minimum required 50%	57%	✓ Pass	
1 Potable water use reduction		40%		
Water Efficient Landscaping		100%		
Building Systems Water Use Reduction		100%		

Energy Overall contribution 27.5%

	Minimum required 50% 729	% Y Pass
1.1 Thermal Performance Rating - Non-Residential	379	6
2.1 Greenhouse Gas Emissions	1009	6
2.2 Peak Demand	1009	6
2.3 Electricity Consumption	1009	6
2.4 Gas Consumption	N/	A Scoped Out
		No gas connection in use
2.6 Electrification	1009	6
3.1 Carpark Ventilation	1009	6
3.2 Hot Water	1009	6
3.7 Internal Lighting - Non-Residential	1009	6
4.1 Combined Heat and Power (cogeneration / trigeneration)	N/	A Scoped Out
	No cogeneration or tr	igeneration system in use
4.2 Renewable Energy Systems - Solar	1009	6
4.4 Renewable Energy Systems - Other	09	6 O Disabled

Stormwater Ove ontribution %

	Minimum required 100%	100%	Y Pass
1.1 Stormwater Treatment		100%	

IEQ Overall contribution 16.5%

	Minimum required 50%	58%	✓ Pass
1.4 Daylight Access - Non-Residential		37%	✓ Achieved
2.3 Ventilation - Non-Residential		66%	Achieved
3.4 Thermal comfort - Shading - Non-residential		92%	
3.5 Thermal Comfort - Ceiling Fans - Non-Residential		0%	
4.1 Air Quality - Non-Residential		100%	

Transport Overall contribution 9.0%

	37%
1.4 Bicycle Parking - Non-Residential	0%
1.5 Bicycle Parking - Non-Residential Visitor	0%
1.6 End of Trip Facilities - Non-Residential	0% ODisabled
	Credit 1.4 must be complete first
2.1 Electric Vehicle Infrastructure	100%
2.2 Car Share Scheme	0%
2.3 Motorbikes / Mopeds	100%

Waste Overall contribution 5.5%

	33%
1.1 - Construction Waste - Building Re-Use	0%
2.1 - Operational Waste - Food & Garden Waste	0%
2.2 - Operational Waste - Convenience of Recycling	100%

Urban Ecology Overall contribution 5.5%

	12%
1.1 Communal Spaces	0%
2.1 Vegetation	25%
2.2 Green Roofs	0%
2.3 Green Walls and Facades	0%
3.2 Food Production - Non-Residential	0%

Innovation Overall contribution 9.0%

	* *	0%
1.1 Innovation		0%

Credit breakdown

Management Overall contribution 4%

1.1 Pre-Application Meeting	100%		
Score Contribution	This credit contributes 37.5% towards the category score.		
Criteria	Has an ESD professional been engaged to provide sustainability advice from schematic		
	design to construction? AND Has the ESD professional been involved in a pre-		
	application meeting with Council?		
Question	Criteria Achieved ?		
Project	Yes		
2.3 Thermal Performance Modelling	g - Non-Residential 100%		
Score Contribution	This credit contributes 25.0% towards the category score.		
Criteria	Has a preliminary facade assessment been undertaken in accordance with NCC20		
(c)	Section J1.5?		
Question	Criteria Achieved ?		
Office	Yes		
Lab/Warehouse	Yes		
Criteria	Has preliminary modelling been undertaken in accordance with either NCC2019		
	Section J (Energy Efficiency), NABERS or Green Star?		
Question	Criteria Achieved ?		
Office	Yes		
Lab/Warehouse	Yes		
3.2 Metering - Non-Residential	100%		
Score Contribution	This credit contributes 12.5% towards the category score.		
Criteria	Have utility meters been provided for all individual commercial tenants?		
Question	Criteria Achieved ?		
Office	Yes		
Lab/Warehouse	Yes		
3.3 Metering - Common Areas	100%		
Score Contribution	This credit contributes 12.5% towards the category score.		
Criteria	Have all major common area services been separately submetered?		
Question	Criteria Achieved ?		
Office	Yes		
Lab/Warehouse	Yes		
4.1 Building Users Guide	100%		
Score Contribution	This credit contributes 12.5% towards the category score.		
Criteria	Will a building users guide be produced and issued to occupants?		
Question	Criteria Achieved ?		
Project	Yes		

Dishwashers: All

Washing Machine Water Efficiency: All

WC: All

Urinals: All

Water Overall contribution 5% Minimum required 50%

Water Approach					
What approach do you want to use for Water?	Use the built in calculation tools				
Project Water Profile Question					
Do you have a reticulated third pipe or an on-srecycling system?:	site water No				
Are you installing a swimming pool?:	No				
Are you installing a rainwater tank?:	Yes				
Water fixtures, fittings and connections					
Building:					
Warehouse					
Wastest					
Main					
Offices					
West					
Dock					
Office					
Warehouse					
West					
Warehouse					
Ea st st					
Main					
Office					
East					
Dock					
Office					
Warehouse					
vvarenouse East					
Showerhead: All	4 Star WELS (>= 6.0 but <= 7.5)				
Bath: All	Scope out				
Kitchen Taps: All	>= 5 Star WELS rating				
Bathroom Taps: All	>= 6 Star WELS rating				

>= 5 Star WELS rating

>= 4 Star WELS rating

>= 6 Star WELS rating

Scope out

The Built Environment Sustainability Scorecard is an initiative of the Council Allian	ce for a Sustainable Built Environment (CASBE).
For more details see www.bess.net.au	

Which

non-

potable

water

source

...

is

the

dwelling/

space

connected

to?:

West

TaldWest

Main

Offices

West

Dock

Office

Warehouse

West

East

Tablast

Main

Office

East

Dock

Office

Warehouse

East

Non-potable water source connected to Toilets:	All	
--	-----	--

Non-potable water source connected to Laundry (washing No

machine): All

Non-potable water source connected to Hot Water System: All No

Rainwater Tanks

What	is	the	total	roof	area	connected	to	the	rainwater	tank?:	

West Tank 23,184 m²

East Tank 24,860 m²

Tank Size:

West Tank 40,000 Litres

East Tank 40,000 Litres

Irrigation area connected to tank:

West Tank 2,388 m²

East Tank 2,897 m²

Yes

West Tank	Yes				
East Tank	Yes				
Other external water demand	connected to tank?:				
West Tank	0.0 Litres/Day				
East Tank	0.0 Litres/Day				
1.1 Potable water use reduct	tion 40%				
Score Contribution	This credit contributes 71.4% towards the category score.				
Criteria	What is the reduction in total potable water use due to efficient fixtures, appliances,				
	rainwater use and recycled water use? To achieve points in this credit there must be				
	>25% potable water reduction.				
Output	Reference				
Project	106009 kL				
Output	Proposed (excluding rainwater and recycled water use)				
Project	73489 kL				
Output	Proposed (including rainwater and recycled water use)				
Project	69325 kL				
Output	% Reduction in Potable Water Consumption				
Project	34 %				
Output	% of connected demand met by rainwater				
Project	20 %				
Output	How often does the tank overflow?				
Project	Very Often				
Output	Opportunity for additional rainwater connection				
Project	15060 kL				
3.1 Water Efficient Landscap	oing 100%				
Score Contribution	This credit contributes 14.3% towards the category score.				
Criteria	Will water efficient landscaping be installed?				
Question	Criteria Achieved ?				
Project	Yes				
4.1 Building Systems Water	Use Reduction 100%				
Score Contribution	This credit contributes 14.3% towards the category score.				
Criteria	Where applicable, have measures been taken to reduce potable water consumption				
	>80% in the buildings air-conditioning chillers and when testing fire safety systems'				
Question	Criteria Achieved ?				
Project	Yes				

Energy Overall contribution 20% Minimum required 50%

	Use the BESS Deem to Satisfy (DtS) method for Energy?:	Yes
	Do all exposed floors and ceilings (forming part of the envelope) demonstrate a minimum 10% improvement in required NCC2019 insulation levels (total R-value upwards and downwards)?:	Yes
	Does all wall and glazing demonstrate meeting the required NCC2019 facade calculator (or better than the total allowance)?:	Yes
	Are heating and cooling systems within one Star of the most efficient equivalent capacity unit available, or Coefficient of Performance (CoP) & Energy Efficiency Ratios (EER) not less than 85% of the CoP & EER of the most efficient equivalent capacity unit available?:	Yes
	Are water heating systems within one star of the best available, or 85% or better than the most efficient equivalent capacity unit?:	Yes
	Non-Residential Building Energy Profiles	
	Heating, Cooling & Comfort Ventilation - Electricity - reference fabric and reference services: All	-
	Heating, Cooling & Comfort Ventilation - Electricity - proposed fabric and reference services: All	
	Heating, Cooling & Comfort Ventilation - Electricity - proposed fabric and proposed services: All	
	Heating - Wood - reference fabric and reference services: All	
	Heating - Wood - proposed fabric and reference services: All	-
	Heating - Wood - proposed fabric and proposed services: All	-2004
	Hot Water - Electricity - Baseline: All	
	Hot Water - Electricity - Proposed: All	-
	Lighting - Baseline: All	8
	Lighting - Proposed: All	-
	Peak Thermal Cooling Load - Baseline: All	-
	Peak Thermal Cooling Load - Proposed: All	-
	Solar Photovoltaic systems	
-	System Size (lesser of inverter and panel capacity):	
	PV	2.0 kW peak
	pv	97.0 kW peak
	Orientation (which way is the system facing)?:	
	PV	North
	pv	North
	Inclination (angle from horizontal):	
	PV	10.0 Angle (degrees)
	pv	10.0 Angle (degrees)
	ρv	10.0 Aligie (degrees)

Which Building Class does this ap	oly to?:					
PV	Office					
pv	Lab/Warehouse	Lab/Warehouse				
1.1 Thermal Performance Rating	- Non-Residential	37%				
Score Contribution	This credit contributes 36.4% towards the	ne category score.				
Criteria	What is the % reduction in heating and of	cooling energy consumption	n against the			
	reference case (NCC 2019 Section J)?					
2.1 Greenhouse Gas Emissions		100%				
Score Contribution	This credit contributes 9.1% towards the	e category score.				
Criteria	What is the % reduction in annual green	house gas emissions again	st the benchmar			
2.2 Peak Demand		100%				
Score Contribution	This credit contributes 4.5% towards the	e category score.				
Criteria	What is the % reduction in the instantaneous (peak-hour) demand against the					
	benchmark?					
2.3 Electricity Consumption		100%				
Score Contribution	This credit contributes 9.1% towards the category score.					
Criteria	What is the % reduction in annual electricity consumption against the benchmark?					
2.4 Gas Consumption		N/A	Scoped			
This credit was scoped out	No gas connection in use					
2.6 Electrification		100%				
Score Contribution	This credit contributes 9.1% towards the	e category score.				
Criteria	Is the development all-electric?					
Question	Criteria Achieved?					
Project	Yes					
3.1 Carpark Ventilation		100%				
Score Contribution	This credit contributes 9.1% towards the category score.					
Criteria	If you have an enclosed carpark, is it: (a) fully naturally ventilated (no mechanical					
	ventilation system) or (b) 40 car spaces or less with Carbon Monoxide monitoring to					
	control the operation and speed of the ventilation fans?					
Question	Criteria Achieved ?					
Project	Yes					
3.2 Hot Water		100%				
Score Contribution This credit contributes 4.5% towards the category score.						
Criteria	What is the % reduction in annual energy consumption (gas and electricity) of the hot					
	water system against the benchmark?					

3.7 Internal Lighting - Non-Resid	ential	100%				
Score Contribution	This credit contributes 9.1% towards the categ	This credit contributes 9.1% towards the category score.				
Criteria	Does the maximum illumination power density (W/m2) in at least 90% of th					
	relevant building class meet the requirements in	Table J6.2a of the N	VCC 20	019 Vol 1?		
Question	Criteria Achieved ?	26.				
Office	Yes					
Lab/Warehouse	Yes					
4.1 Combined Heat and Power (c trigeneration)	ogeneration /	N/A	0	Scoped Ou		
This credit was scoped out	No cogeneration or trigeneration system in use					
4.2 Renewable Energy Systems -	Solar	100%				
Score Contribution	This credit contributes 4.5% towards the categ	ory score.				
Criteria	What % of the estimated energy consumption solar power system provide?	of the building class	it supp	lies does the		
Output	Solar Power - Energy Generation per year					
Office	2,424 kWh	, , , , , , , , , , , , , , , , , , ,				
Lab/Warehouse	117,548 kWh					
Output	% of Building's Energy					
Office	11 %					
Lab/Warehouse	5 %					
4.4 Renewable Energy Systems -	Other	0%		O Disable		
This credit is disabled	No other (non-solar PV) renewable energy is in	use.				

Stormwater Overall contribution 14% Minimum required 100%

Which stormwater modelling are you using?:		MUSIC or other modelling software	
1.1 Stormwater Treatment		100%	
Score Contribution	This credit contr	ibutes 100.0% towards the category score.	
Criteria	Has best practic	e stormwater management been demonstrated?	
Question	Flow (ML/year)		
Project	1.3 % Reduction	1	
Question	Total Suspended	d Solids (kg/year)	
Project	81.3 % Reduction	on	
Question	Total Phosphoru	s (kg/year)	
Project	60.6 % Reduction	on	
Question	Total Nitrogen (k	g/year)	
Project	50.0 % Reduction	on	

IEQ Overall contribution 10% Minimum required 50%

1.4 Daylight Access - Non-Res	idential	37%	~	Achieved
Score Contribution	This credit contributes 35.3% towards the	category score.		
Criteria	What % of the nominated floor area has a	t least 2% daylight factor?		
Question	Percentage Achieved?			
Office	37 %			
Lab/Warehouse	37 %			
2.3 Ventilation - Non-Residenti	al	66%	~	Achieved
Score Contribution	This credit contributes 35.3% towards the	category score.		
Criteria	What % of the regular use areas are effect	tively naturally ventilated?		
Question	Percentage Achieved?	***		
Office				
Lab/Warehouse	0 %	<u> </u>		
Criteria	What increase in outdoor air is available to	regular use areas compare	d to the	minimum
1,240,000	required by AS 1668.2:2012?			
Question	What increase in outdoor air is available to regular use areas compared to the minimum required by AS 1668:2012?			
Office	50 %			
Lab/Warehouse	50 %			
Criteria	What CO2 concentrations are the ventilation systems designed to achieve, to monitor and to maintain?		monitor	
Question	Value			
Office	800 ppm			
Lab/Warehouse	800 ppm			
3.4 Thermal comfort - Shading	- Non-residential	92%		
Score Contribution	This credit contributes 17.6% towards the	category score.		
Criteria	What percentage of east, north and west glazing to regular use areas is effectively shaded?		tively	
Question	Percentage Achieved?			
Office	-			
Lab/Warehouse	100 %	-9		
3.5 Thermal Comfort - Ceiling I	Fans - Non-Residential	0%		
Score Contribution	This credit contributes 5.9% towards the	category score.		
Criteria	What percentage of regular use areas in tenancies have ceiling fans?			
Question	Percentage Achieved?			
Office		2. 31. 3.		
Lab/Warehouse	0 %			
4.1 Air Quality - Non-Residenti	al	100%		
	This credit contributes 5.9% towards the			

Criteria	Do all paints, sealants and adhesives meet the maximum total indoor pollutant emission limits? Criteria Achieved ?	
Question		
Office	Yes	
Lab/Warehouse	Yes	
Criteria	Does all carpet meet the maximum total indoor pollutant emission limits?	
Question	Criteria Achieved ?	
Office	Yes	
Lab/Warehouse	Yes	
Criteria	Does all engineered wood meet the maximum total indoor pollutant emission limits?	
Question	Criteria Achieved ?	
Office	Yes	
Lab/Warehouse	Yes	

Transport Overall contribution 3%

1.4 Bicycle Parking - Non-Residential		0%	
Score Contribution	This credit contributes 25.0% towards the category score.	ja	
Criteria	Have the planning scheme requirements for employee bicycle parking been excee		
	by at least 50% (or a minimum of 2 where there is no planning	ng scheme requirement)?	
Question	Criteria Achieved ?	9	
Office	No		
Lab/Warehouse	No		
Question	Bicycle Spaces Provided ?		
Office	-		
Lab/Warehouse	0		
1.5 Bicycle Parking - Non-Residential	Visitor	0%	
Score Contribution	This credit contributes 12.5% towards the category score.		
Criteria	Have the planning scheme requirements for visitor bicycle parking been exceeded by		
	at least 50% (or a minimum of 1 where there is no planning s	scheme requirement)?	
Question	Criteria Achieved ?		
Office	No	100	
Lab/Warehouse	No	,	
Question	Bicycle Spaces Provided ?		
Office			
Lab/Warehouse			
1.6 End of Trip Facilities - Non-Reside	ential	0% Ø Disable	
This credit is disabled	Credit 1.4 must be complete first.		
2.1 Electric Vehicle Infrastructure	10	0%	
Score Contribution	This credit contributes 25.0% towards the category score.		
Criteria	Are facilities provided for the charging of electric vehicles?		
Question	Criteria Achieved ?		
Project	Yes		
2.2 Car Share Scheme		0%	
Score Contribution	This credit contributes 12.5% towards the category score.		
Criteria	Has a formal car sharing scheme been integrated into the development?		
Question	Criteria Achieved ?		
Project	No		
2.3 Motorbikes / Mopeds	10	0%	
Score Contribution	This credit contributes 12.5% towards the category score.		
Criteria	Are a minimum of 5% of vehicle parking spaces designed an	nd labelled for motorbikes	
	(must be at least 5 motorbike spaces)?		
0 "	Criteria Achieved ?	10	
Question	0111011011011011011		

Waste Overall contribution 2%

1.1 - Construction Waste - Building Re-Use 0%		0%
Score Contribution	This credit contributes 33.3% toward	s the category score.
Criteria	If the development is on a site that has been previously developed, has at least 30% of	
	the existing building been re-used?	
Question	Criteria Achieved ?	
Project	No	
2.1 - Operational Waste - Fo	od & Garden Waste	0%
Score Contribution	This credit contributes 33.3% toward	s the category score.
Criteria	Are facilities provided for on-site man	agement of food and garden waste?
Question	Criteria Achieved ?	
Project	No	
2.2 - Operational Waste - Co	nvenience of Recycling	100%
Score Contribution	This credit contributes 33.3% towards the category score.	
Criteria	Are the recycling facilities at least as convenient for occupants as facilities for general	
	waste?	
Question	Criteria Achieved ?	
Project	Voc	

Urban Ecology Overall contribution 1%

1.1 Communal Spaces	0%	
Score Contribution	This credit contributes 12.5% towards the category score.	
Criteria	Is there at least the following amount of common space measured in square meters:	
	1m² for each of the first 50 occupants * Additional 0.5m² for each occupant between 5	
	and 250 * Additional 0.25m² for each occupant above 251?	
Question	Common space provided	
Office	•	
Lab/Warehouse	+	
Output	Minimum Common Space Required	
Office	256 m²	
Lab/Warehouse	1081 m²	
2.1 Vegetation	25%	
Score Contribution	This credit contributes 50.0% towards the category score.	
Criteria	How much of the site is covered with vegetation, expressed as a percentage of the	
	total site area?	
Question	Percentage Achieved ?	
Project	8 %	
2.2 Green Roofs	0%	
Score Contribution	This credit contributes 12.5% towards the category score.	
Criteria	Does the development incorporate a green roof?	
Question	Criteria Achieved ?	
Project	No	
2.3 Green Walls and Facades	0%	
Score Contribution	This credit contributes 12.5% towards the category score.	
Criteria	Does the development incorporate a green wall or green façade?	
Question	Criteria Achieved ?	
Project	No	
3.2 Food Production - Non-Reside	ential 0%	
Score Contribution	This credit contributes 12.5% towards the category score.	
Criteria	What area of space per occupant is dedicated to food production?	
Question	Food Production Area	
Office		
Lab/Warehouse		
Output	Min Food Production Area	
Office	119 m²	
Lab/Warehouse	944 m²	

Innovation Overall contribution 0%

1.1 Innovation		
Score Contribution		
Criteria	What percentage of the Innovation points have been claimed (10 points maximum)	

Note

This is a DRAFT and not suitable for submission to council.

Disclaimer

The Built Environment Sustainability Scorecard (BESS) has been provided for the purpose of information and communication. While we make every effort to ensure that material is accurate and up to date (except where denoted as 'archival'), this material does in no way constitute the provision of professional or specific advice. You should seek appropriate, independent, professional advice before acting on any of the areas covered by BESS.

The Municipal Association of Victoria (MAV) and CASBE (Council Alliance for a Sustainable Built Environment) member councils do not guarantee, and accept no legal liability whatsoever arising from or connected to, the accuracy, reliability, currency or completeness of BESS, any material contained on this website or any linked sites

Appendix B Stormwater Management Plan

Stage 1, Axxess Corporate Park, Mount Waverley STORMWATER MANAGEMENT STRATEGY

September 2022

DCE Ref: 22058

FOR

dexus

Disclaimer

Dalton Consulting Engineers Pty Ltd

This report has been prepared solely for the benefit of the City of Monash, Dexus, and Dalton Consulting Engineers Pty Ltd. No liability is accepted by this company or any employee or subconsultant of this company with respect to its use by any other person.

This disclaimer shall apply notwithstanding that the report may be made available to other persons for an application for permission or approval or to fulfil a legal requirement.

Document History		
Revision:		
Α		
Date:		
September 2022		
Description:		
Stormwater Management Strategy		
Prepared:		
S Khaji AN: 3701045		
Reviewed:		
J Baumann AN: 401284		
Approved:		
T Liakopoulos AN: 889478		

Executive Summary

This report outlines the stormwater drainage and management strategy for the development of Stage 1, comprising Lots 1 and 2 at 170 Forster Road, Mount Waverley.

Stage 1, the subject site, is located within the City of Monash and will be developed such that the City of Monash and Melbourne Water stormwater requirements are achieved. The proposed development will comprise industrial and commercial development.

Underground drainage within the proposed development will be designed to convey minor event flows up to and including the 10% Annual Exceedance Probability (AEP) flows in accordance with council requirements.

For major events, defined as flows greater than the 10% AEP event, up to and including the 1% AEP, safe overland flow paths will be provided to direct stormwater to adjacent roads.

The City of Monash has advised that no detention or contribution is required owing to the site being in an existing industrial area. City of Monash correspondence is included in Appendix A.

Stormwater quality treatment will be provided to ensure that stormwater is treated to best practice environmental management (BPEM) targets prior to leaving the site.

Consideration needs to be given to the fact that as there are multiple land parcels within the subject site, they may be subject to individual requirements for legal points of discharge and stormwater treatment. Stormwater management at the subject site will be undertaken in a way that corresponds with the planning and future development of other stages of development.

Contents

Exe	cutive Summary	ii
1.	Introduction	1
2.	Site Overview	2
	Existing condition	
2.2.	Development Plan	5
3.	Stormwater Management	6
3.1.	Proposed Development Condition	6
3.2.	Minor Event Flows	7
3.2.1	1.Minor Flow Calculation	8
3.2.2	2.Management of Minor Flows	8
	Major Event Flows	
3.3.1	1.Major Event Flow Calculations	9
3.3.2	2.Management of Major Flows	9
3.4.	Rare Event Flows (0.2% AEP)	10
3.5.	On-site Detention (OSD)	11
3.6.	External Catchments	11
4.	Stormwater Quality Treatment	12
5.	Conclusion	14
App	endices	15
App	endix B: Drainage Calculations endix C: Development Plan endix D: MUSIC Model Inputs and Results of Tables	
Tabl	le 1: Existing flows at the subject site	4
	le 2: Developed minor flows	
	le 3: Developed major flows	
	le 4: Developed rare (1-in-500) flows	
rabi	le 5: Raingardens Treatment Effectiveness and Size	12
Liet	of Figures	
		1
Figu	ure 1: Subject site in the existing condition	۱
Figu	re 2: Subject site topographyre 3: Subject site and Council drainage assets	2
Figu	re 4: Existing catchment plan showing location of peak flow calculation	
	re 5: Development plan	
	re 6: Development plan showing location of peak flow calculation	
	re 7: Developed catchment plan showing location of peak now calculation	
	re 8: Indicative minor flow paths and directions	
	ure 9: Indicative major flow paths and direction	
	re 10: MUISC Model Schematic	
	re 11: Indicative location and size of each raingarden	
Figu	ure 12: Example of Raingarden in An Industrial Development	13
0		

1. Introduction

This report presents the stormwater drainage and management strategy for the proposed development of the subject site, Stage 1 of Axxess Corporate Park. Stage 1 comprises proposed lots 1 and 2. The subject site is located within Mount Waverley, comprises approximately 6 ha and is located within the City of Monash.

The subject site is currently zoned for industrial use. Industrial/commercial development exists at at the subject site in the existing condition. The proposed development will also be industrial/commercial land use. Figure 1 shows the subject site in the existing condition.

The subject site comprises 6 ha and slopes generally towards the north-west to Forster Road. This stormwater management strategy will demonstrate that the subject site can appropriately manage stormwater in the developed condition and accommodate all required infrastructure.

The subject site is part of the Axxess Corporate Park development. A stormwater management strategy (SWMS) for the entire development has been prepared by DCE. 22058jul0422-SWMS Rev A (DCE, 2022) has been submitted to Council.

Figure 1: Subject site in the existing condition

2. Site Overview

2.1. Existing condition

In the existing condition, the subject site land use is industrial. Publicly available elevation contours indicates that the subject site drains north-west to Forster Road. Figure 2 shows the subject site topography.

Figure 2: Subject site topography

A Before-You-Dig enquiry has indicated that there is existing Council infrastructure within the Forster Road adjacent to the subject site. Figure 3 shows the location of the existing council underground drainage infrastructure. Complete Council drainage plans are included in Appendix A.

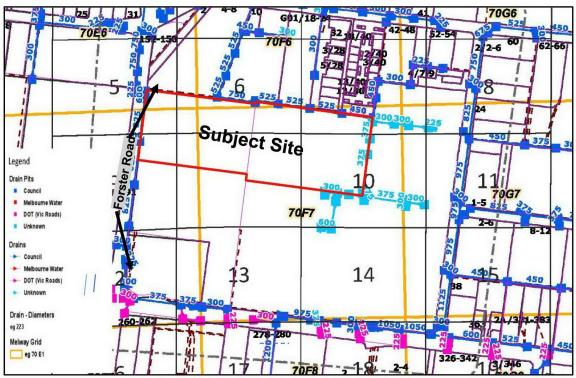


Figure 3: Subject site and Council drainage assets

During detailed design, it will need to be assessed if the existing Council infrastructure within the site can be retained or if it will need to be decommissioned. Since the site is currently used for industrial purposes, it is likely that there is existing underground drainage within the subject site that is not indicated in the BYD, and that these have been sized to cater for minor flows up to the 10% AEP. It is also expected that existing roads and other overland flow paths have been sized to convey the gap flows (i.e., 1% AEP -10% AEP flows)

In the existing condition, the site generally slopes to the north-west. The BYD information indicates that there is an existing Council underground drain at the north-west of the subject site. The existing 825-mm diameter stormwater pipe on Forster Road is the assumed Legal Point of Discharge for the site. This will need to be confirmed with the City of Monash. Existing flows have been calculated for the entire subject site at a single outlet at the north-west boundary of the subject site. Figure 4 shows the existing catchment and the location of peak flow calculations.

Figure 4: Existing catchment plan showing location of peak flow calculation

Existing condition flows for the subject site have been calculated and are shown in Table 1. Details of the drainage calculations are included as Appendix B.

Table 1: Existing flows at the subject site

Catchment	10% AEP flow (m³/s)	1% AEP flow (m³/s)
Subject Site	0.78	1.74

2.2. Development Plan

The development plan for the subject site incorporates industrial lots and an internal road. Figure 5 shows the development plan for the subject site. A full-size development plan is included as Appendix C.

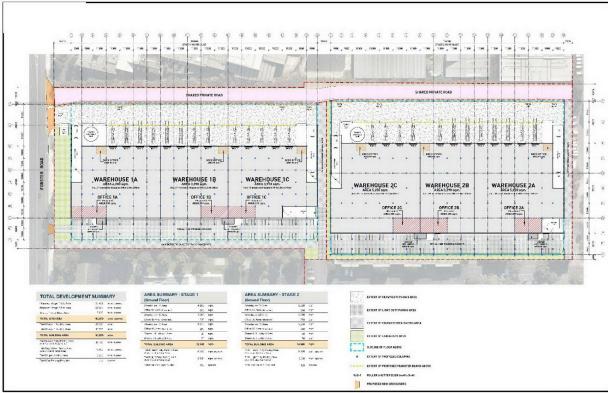


Figure 5: Development plan

3. Stormwater Management

The subject site is located within the City of Monash and is subject to Council stormwater guidelines. Major and minor flows have been calculated for both existing and developed conditions for the development. Flows have been calculated based on the City of Monash stormwater guidelines.

All flow calculations have been completed using the Rational Method, reflecting industry best practice and in accordance with Australian Rainfall and Runoff (2019) (ARR19) guidance.

3.1. Proposed Development Condition

In the developed condition, the subject site is to remain as an industrial use in the proposed development. A full-size plan of the proposed development is included as Appendix C.

As the subject site is proposed to be developed for industrial use, minor internal drainage will be sized to cater for the 10% Annual Exceedance Probability (AEP). Minor drainage from the subject site will be conveyed to existing Council drainage at the north-western boundary of the subject site.

Major overland flow paths will be sized to direct flows in excess of the capacity of the minor drainage to existing overland flow paths within the existing access road. Stormwater drainage will be managed as part of the development.

Design of underground drainage and overland flow paths within the subject site will cater for external flows from other stages of the Axxess Corporate Park development. This report defines minor flows as stormwater flows up to and including the 10% AEP Annual Exceedance Probability (AEP). Major flows are defined as greater than the 10% AEP flow up to and including the 1% AEP flow. All calculations and drainage design in this report are compliant with ARR19 methodology and reflect industry Best Practice approaches.

Figure 6: Developed catchment plan showing location of peak flow calculation.

Figure 7: Developed catchment plan showing the external catchment

3.2. Minor Event Flows

Minor event flows will be managed within the development prior to discharge to existing Council drainage. Minor flows, up to and including the 10% AEP event will be directed to existing Council drainage assets at the north-western boundary of the subject site. This report defines minor event flows for industrial developments as 10% AEP flows. Complete drainage calculations are included in Appendix B.

The minor drainage system will be designed to control stormwater flows under normal operating conditions and minor rainfall events. The exact configuration of the minor drainage system will be determined during detailed design. The flows presented in this report will be refined during detailed design.

3.2.1. Minor Flow Calculation

Minor peak 10% AEP developed flow is shown in Table 2.

Table 2: Developed minor flows

Catchment	Location	10% AEP flow (m³/s)
Subject Site	1	0.8
Subject Site and External Catchment	1	1.1

3.2.2. Management of Minor Flows

Minor flows will be managed at the precinct level. Minor drainage for each lot will connect to underground drainage within the proposed road and then to existing Council drainage at the north-western boundary of the subject site.

As part of the proposed development works, Dexus have noted that they wish to make provision to subdivide Lots 1 & 2 in the future. In order to subdivide the lots in the future, each lot must be individually serviced and have its own legal point of discharge. As a result, it is likely that a drainage easement will be required through either Lot 1 or along the private road to ensure that a discharge point is created for Lot 2.

Further advice should be sought from a relevant town planner and licensed surveyor. Stormwater quality treatment and on-site detention will be provided for the subject site prior to discharge to Council assets. Stormwater quality treatment is detailed in Section 4. Figure 8 shows indicative minor event flow paths and the direction of flow.

Figure 8: Indicative minor flow paths and directions

3.3. Major Event Flows

Major flows, greater than the 10% AEP and up to and including the 1% AEP, will be conveyed safely overland through the subject site, ensuring no damage to property or risk to people.

3.3.1. Major Event Flow Calculations

Major flows from the subject site will be conveyed safely through the subject site to Forster Road. The 1% AEP developed flow is shown in Table 3. Complete drainage calculations are included in Appendix B.

Table 3: Developed major flows

Catchment	Location	1% AEP flow (m³/s)
Subject Site	1	1.7
Subject Site and External Catchment	1	2.4

3.3.2. Management of Major Flows

Major event flows will be conveyed safely overland via the proposed internal road network to Forster Road. The overland flow paths within the subject site will be designed such that Melbourne Water's Guidelines for Development in Flood-prone Areas (Melbourne Water, 2007) criteria for safe overland

flow depth (< 0.35 m), velocity (< 1.5 m/s), and depth x velocity (< 0.35 m2/s) criteria are met. The design of the development will ensure sufficient protection from 1% AEP flows to finished floor levels.

Figure 6 shows indicative major event flow paths. The direction of flow is also noted.

Figure 9: Indicative major flow paths and direction

3.4.Rare Event Flows (0.2% AEP)

During development of the SWMS for the subject site, DCE was asked to consider management of rare event (0.2% AEP or 1-in-500) flows. Rare event flows will be used to inform finished floor levels to ensure adequate protection to properties in rare events.

As shown in Table 4, rare event flows for the subject site and external catchment (Axxess Corporate Park Catchment A) have been calculated. The rare event flows will inform the civil design of the proposed internal road and will be used to set finished floor levels.

Table 4: Developed rare (1-in-500) flows

Catchment	nt Location 0.2% AEP (1-in-500	
Subject Site	1	2.711
Subject Site and External Catchment	1	3.644

3.5.On-site Detention (OSD)

The City of Monash has advised that on-site detention (OSD) does not need to be provided. The site is currently used for industrial use, and it will be redeveloped for industrial use. City of Monash correspondence is included in Appendix A.

3.6. External Catchments

As shown in Figure 7, the subject site is part of Axxess Corporate Park Catchment A. Provision for minor, major, and rare flows from the remainder of Catchment A has been made within the subject site. Minor underground drainage and overland flow paths will be designed to convey complete Catchment A flows.

4. Stormwater Quality Treatment

The subject site is proposed to be developed for industrial use. Stormwater quality treatment is required to treat flows to Best Practice Environmental Management (BPEM) standards. The stormwater quality treatment satisfies planning requirements for stormwater quality treatment.

Two raingardens (bioretention systems) will be used to treat runoff from all areas of the subject site. The raingardens have been sized using MUSIC modelling. The complete MUSIC model is available upon request as an electronic attachment to this report. The MUSIC model inputs and results are included in Appendix E.

Figure 10 shows the MUSIC model schematic and the proposed locations of the raingardens. Note that the development plan of the subject site will be updated to allocate area for the raingardens. The indicative location and size of each raingarden is shown in Figure 11. Figure 12 shows an example of a similar raingarden within an industrial development. Table 5 shows the required size of the raingardens for the proposed development.

Table 5: Raingardens Treatment Effectiveness and Size

Catchment	Total Suspended Solids (% Reduction)	Total Phosphorus (% Reduction)	Total Nitrogen (% Reduction)	Gross Pollutants (% Reduction)	Raingarden Area (m²)
Lot 1 and internal road	80.8	60.8	50.1	100	120
Lot 2	81.6	60.9	50.4	100	100

Downspouts can direct roof runoff overland to the respective inlets of the proposed raingardens. The grading of carparks and other hardstand area will also direct runoff to raingardens. Raingardens will be designed to ensure that flows in excess of the treatment capacity of the raingardens are captured by underground drainage prior to discharge to the Council drainage network.

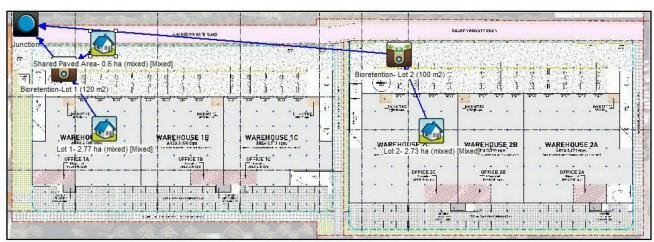


Figure 10: MUISC Model Schematic

Figure 11: Indicative location and size of each raingarden

Figure 12: Example of Raingarden in An Industrial Development

5. Conclusion

This report outlines the stormwater drainage and management strategy for the proposed development of the subject site, Stage 1, Lots 1 and 2, of the Axxess Corporate Park, located at 170 Forster Road, Mount Waverley. The subject site will comprise approximately 6 ha of industrial development.

In minor events, up to and including the 10% AEP event, stormwater will be directed to existing Council underground drainage assets at the north-western boundary of the subject site. Council guidelines define minor event flows for industrial developments as being 10% AEP flows.

In major events (greater than the 10% AEP and up to and including the 1% AEP), overland flow will be conveyed safely overland through the subject site, ensuring no damage to property or risk to people.

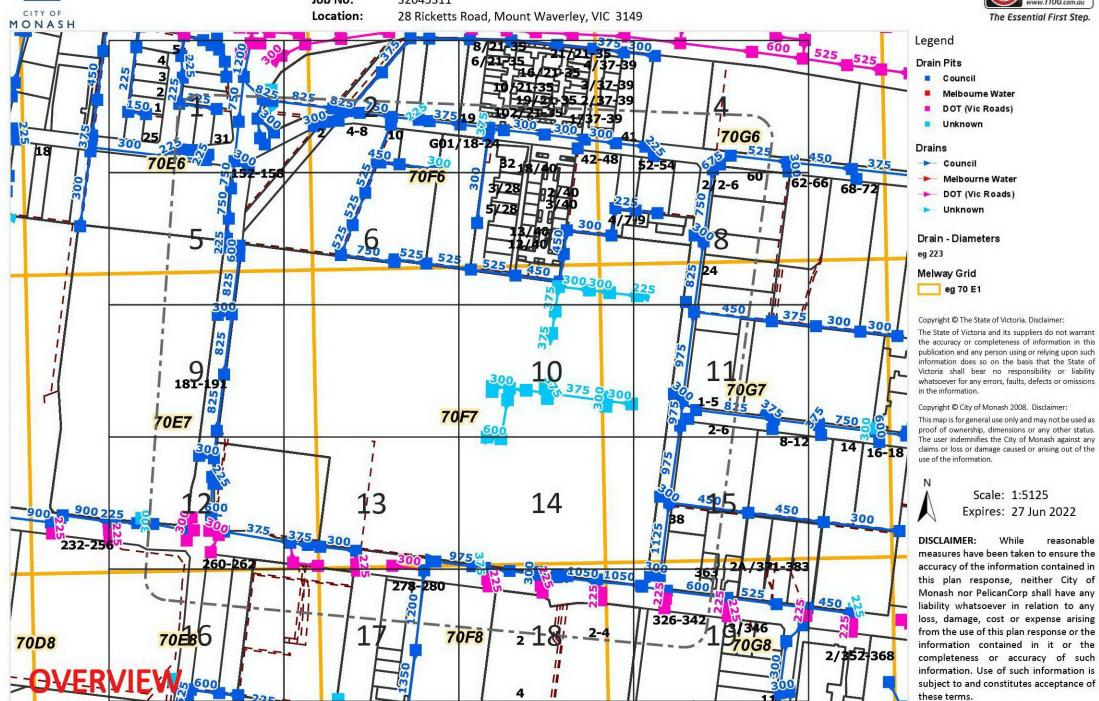
All overland flow paths will be sized during detailed design to ensure appropriate protection is provided to the development's finished floor levels.

Stormwater quality treatment will be provided for the subject site. It is provided that raingardens be used to treat stormwater from the subject site.

Consideration needs to be given to the fact that as there are multiple land parcels within the subject site, they may be subject to individual requirements for legal points of discharge and stormwater treatment. This SWMS for Stage 1, comprising Lots 1 and 2, allows for overland (major) and underground (minor) flows from Axxess Corporate Park Catchment A to be safely conveyed through the subject site.

This strategy presents a concept drainage design and may be refined during detailed design.

Appendices


Appendix A: Monash City Council Assets and Correspondence

D22-412314

Sequence No: 211969186 Job No: 32045311

The Essential First Step.

Legend

Drain Pits

- Council

 - Melbourne Water
 - DOT (Vic Roads)
- Unknown

Drains

- Council
- Melbourne Water
- DOT (Vic Roads)
- Unknown

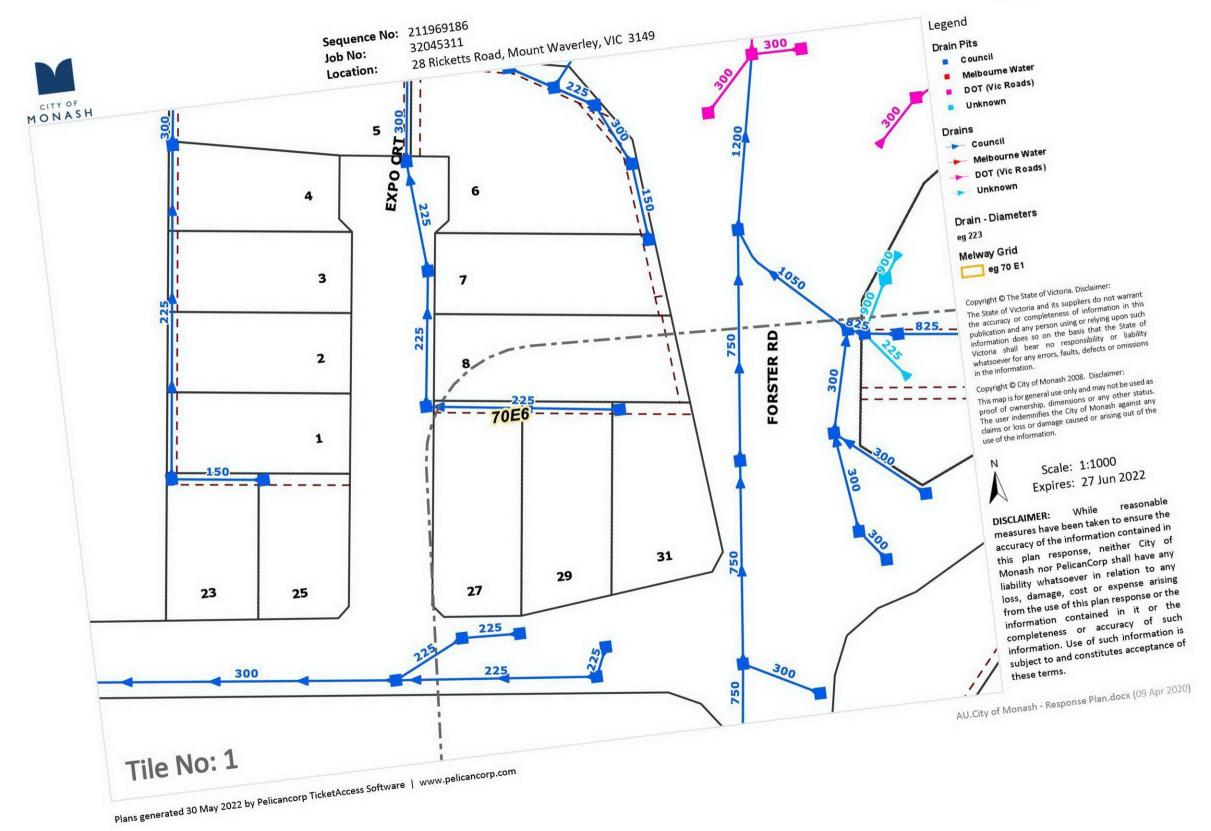
Drain - Diameters

Melway Grid

eg 70 E1

Copyright © The State of Victoria. Disclaimer:

The State of Victoria and its suppliers do not warrant the accuracy or completeness of information in this publication and any person using or relying upon such information does so on the basis that the State of Victoria shall bear no responsibility or liability whatsoever for any errors, faults, defects or omissions in the information.


Copyright © City of Monash 2008. Disclaimer:

This map is for general use only and may not be used as proof of ownership, dimensions or any other status. The user indemnifies the City of Monash against any claims or loss or damage caused or arising out of the use of the information.

Scale: 1:5125 Expires: 27 Jun 2022

DISCLAIMER: While reasonable measures have been taken to ensure the accuracy of the information contained in this plan response, neither City of Monash nor PelicanCorp shall have any liability whatsoever in relation to any loss, damage, cost or expense arising from the use of this plan response or the information contained in it or the

Sequence No: 211969186 Job No: 32045311 28 Ricketts Road, Mount Waverley, VIC 3149 Location: MONASH Legend Drain Pits Council Melbourne Water Drains Council eg 223 eg 70 E1 5-7 **70F6** 9-11 RICKETTS RD 450 4-8 10 ile Mo: 2

- DOT (Vic Roads)
- Unknown
- Melbourne Water
- DOT (Vic Roads)
- Unknown

Drain - Diameters

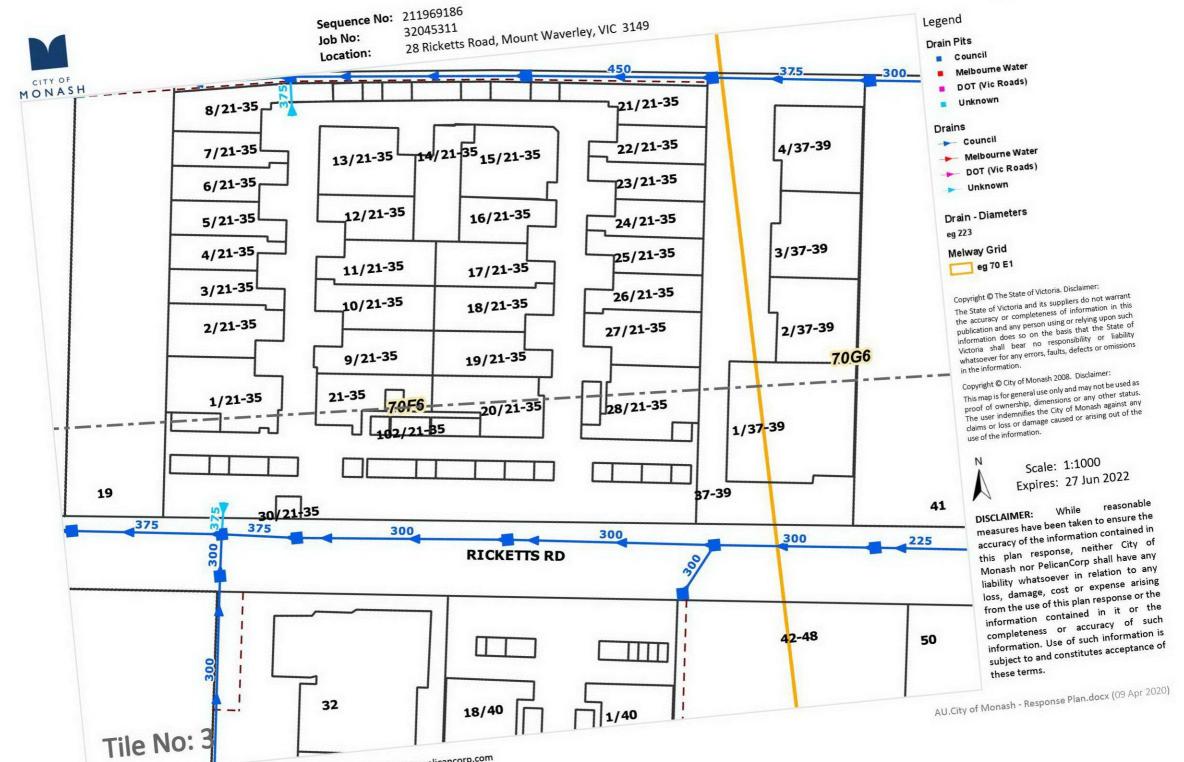
Melway Grid

Copyright © The State of Victoria. Disclaimer:

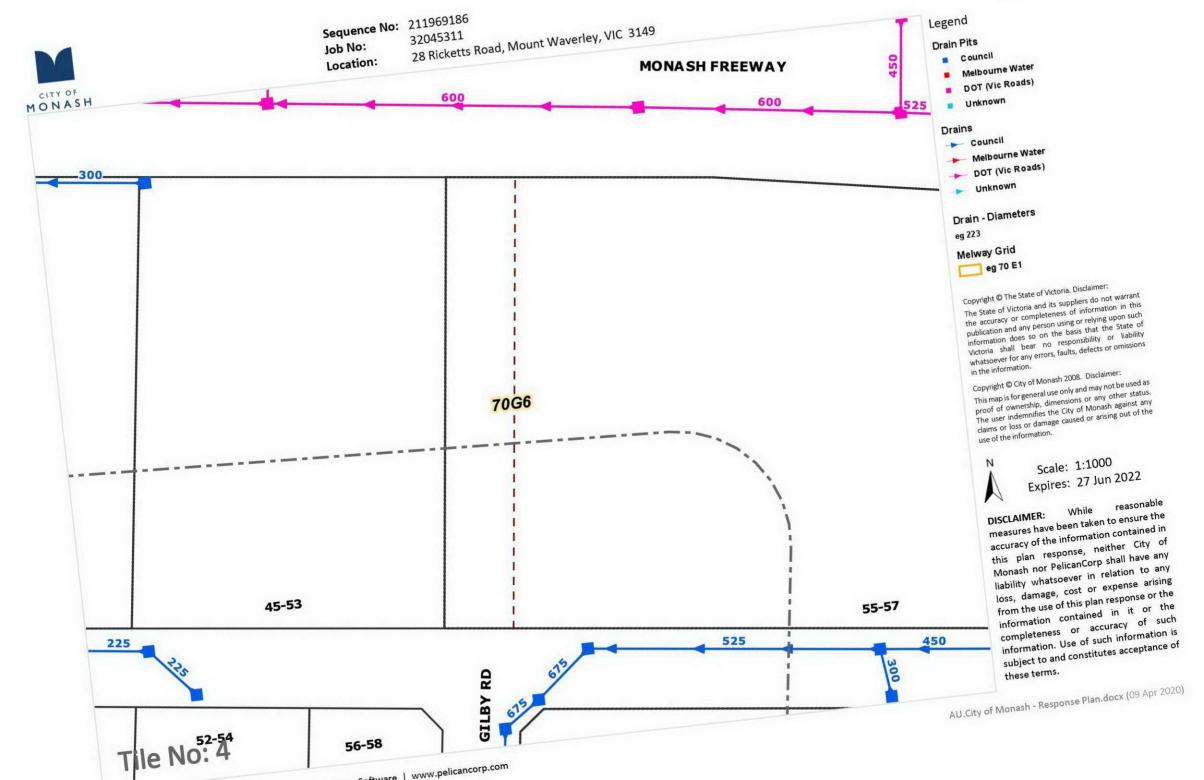
The State of Victoria and its suppliers do not warrant the accuracy or completeness of information in this publication and any person using or relying upon such information does so on the basis that the State of Victoria shall bear no responsibility or liability whatsoever for any errors, faults, defects or omissions in the information.

Copyright © City of Monash 2008. Disclaimer:

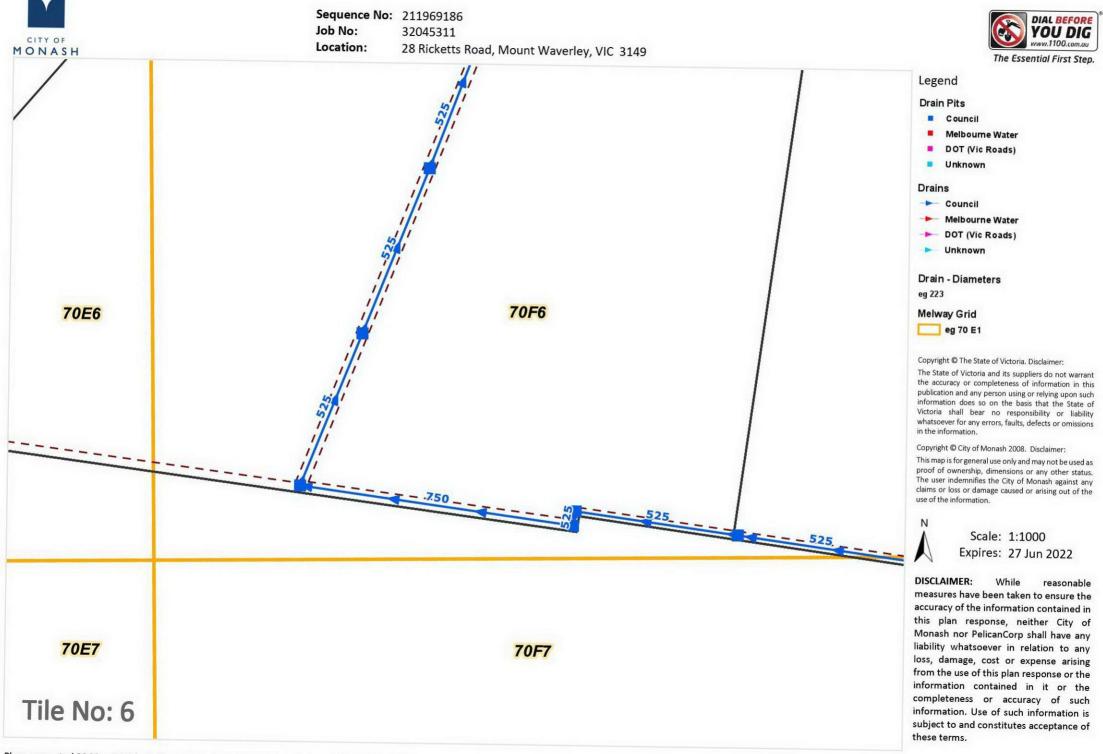
This map is for general use only and may not be used as proof of ownership, dimensions or any other status. The user indemnifies the City of Monash against any claims or loss or damage caused or arising out of the use of the information.


Scale: 1:1000

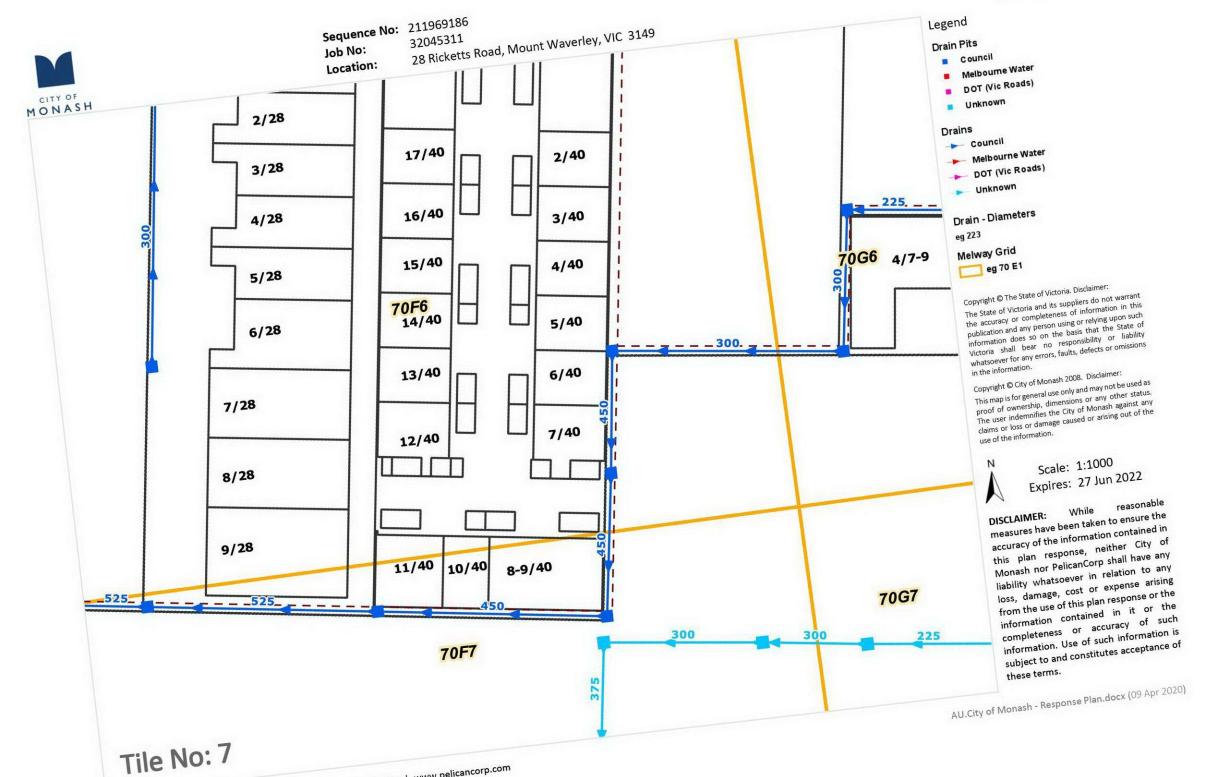
Expires: 27 Jun 2022


DISCLAIMER: While reasonable measures have been taken to ensure the accuracy of the information contained in this plan response, neither City of Monash nor PelicanCorp shall have any liability whatsoever in relation to any loss, damage, cost or expense arising from the use of this plan response or the information contained in it or the completeness or accuracy of such information. Use of such information is subject to and constitutes acceptance of these terms.

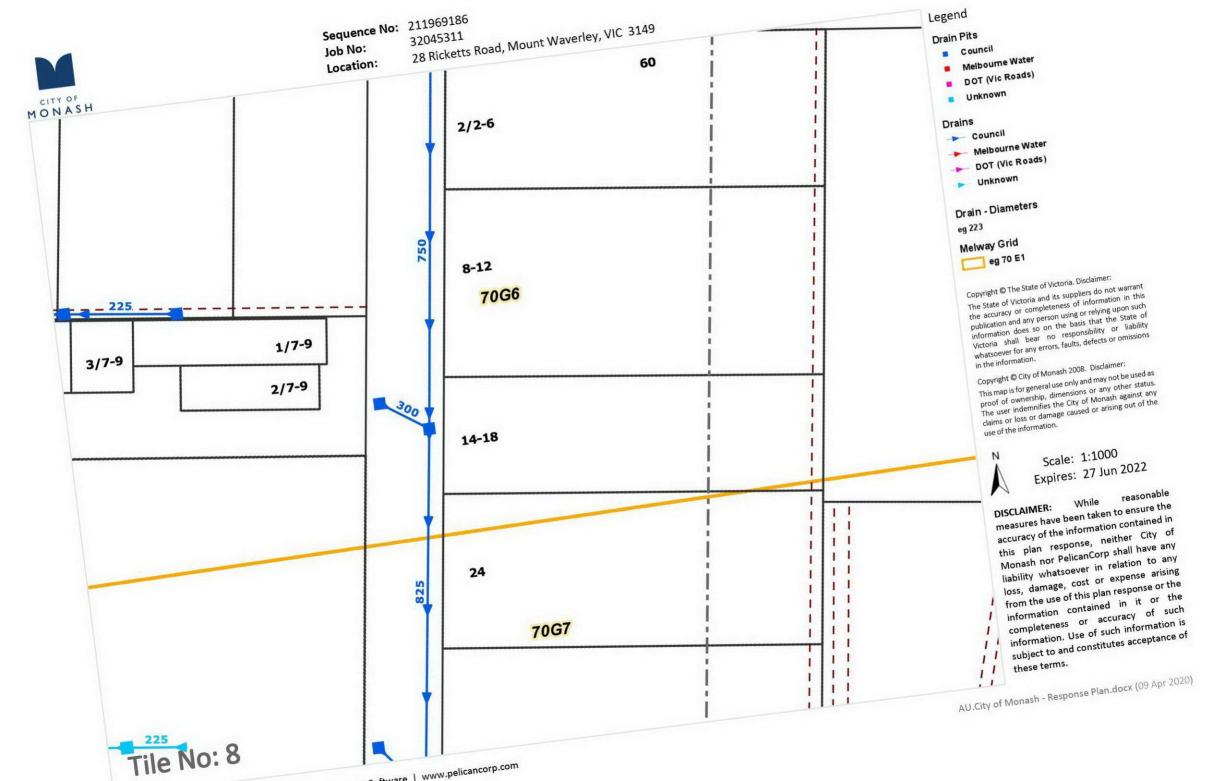
D22-412314



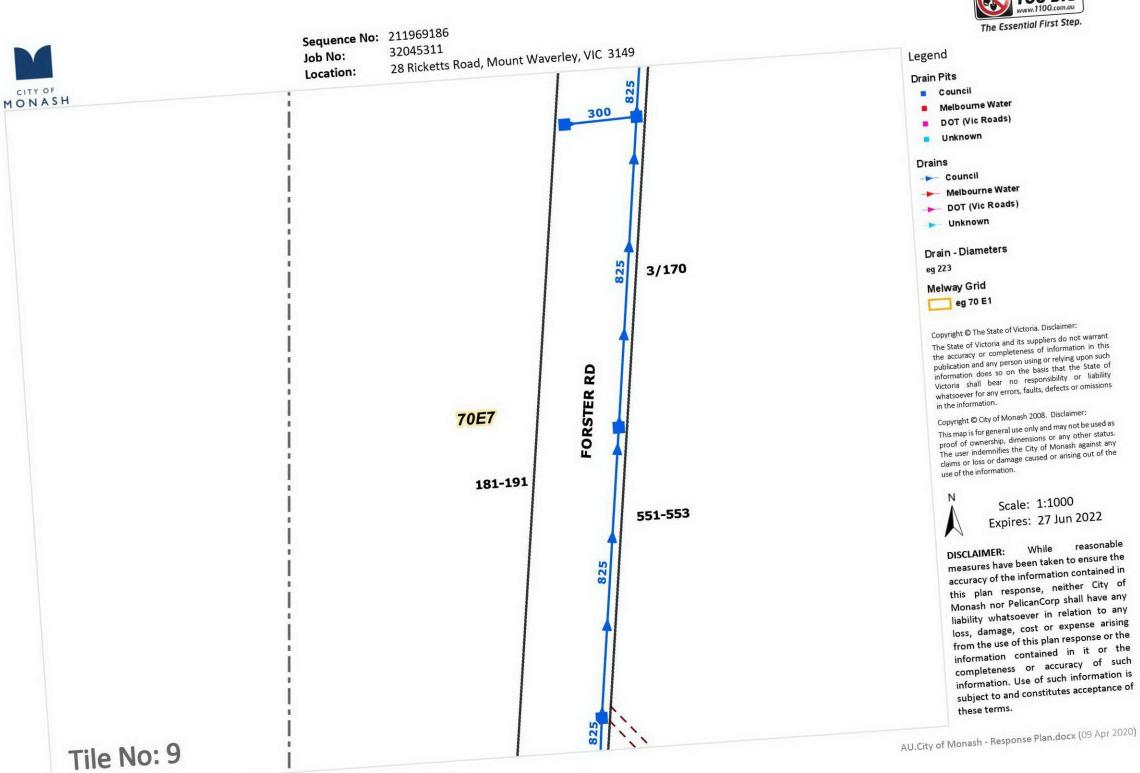
D22-412314 **Sequence No: 211969186** Job No: 32045311 Location: 28 Ricketts Road, Mount Waverley, VIC 3149 MONASH Legend **Drain Pits** Council Melbourne Water DOT (Vic Roads) Unknown Drains Council 151-161 Melbourne Water DOT (Vic Roads) Unknown Drain - Diameters eg 223 Melway Grid 70E6 eg 70 E1 FORSTER RD Copyright © The State of Victoria. Disclaimer: The State of Victoria and its suppliers do not warrant the accuracy or completeness of information in this publication and any person using or relying upon such information does so on the basis that the State of Victoria shall bear no responsibility or liability whatsoever for any errors, faults, defects or omissions Copyright © City of Monash 2008. Disclaimer: This map is for general use only and may not be used as proof of ownership, dimensions or any other status. The user indemnifies the City of Monash against any claims or loss or damage caused or arising out of the use of the information. Scale: 1:1000 Expires: 27 Jun 2022 DISCLAIMER: While measures have been taken to ensure the accuracy of the information contained in 825 this plan response, neither City of Monash nor PelicanCorp shall have any liability whatsoever in relation to any loss, damage, cost or expense arising 70E7 from the use of this plan response or the information contained in it or the completeness or accuracy of such information. Use of such information is Tile No: 5 subject to and constitutes acceptance of these terms.


The Essential First Step.

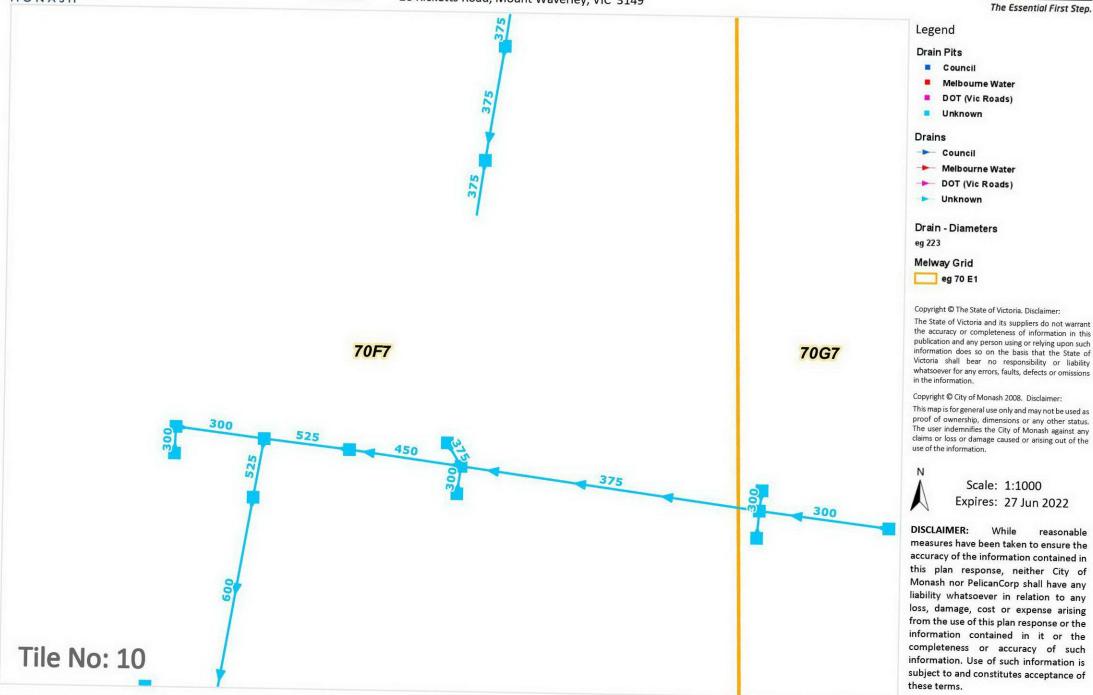
reasonable



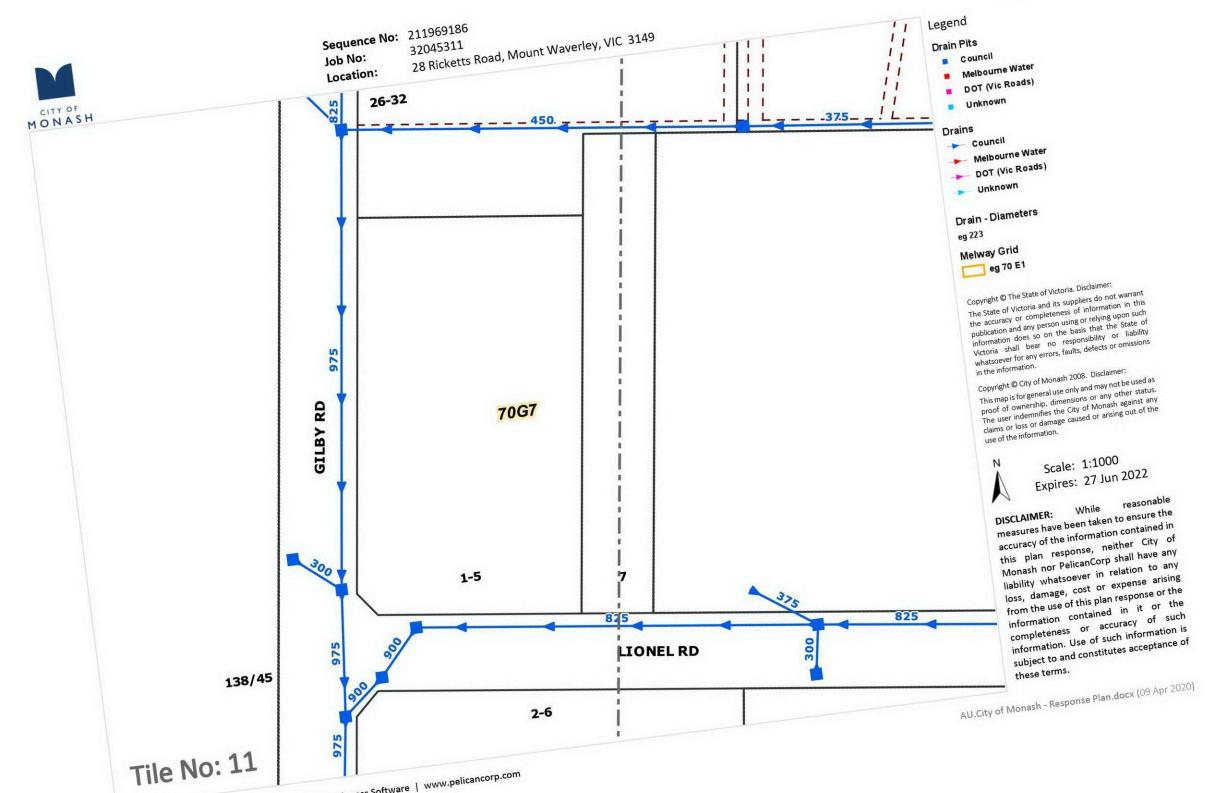
D22-412314



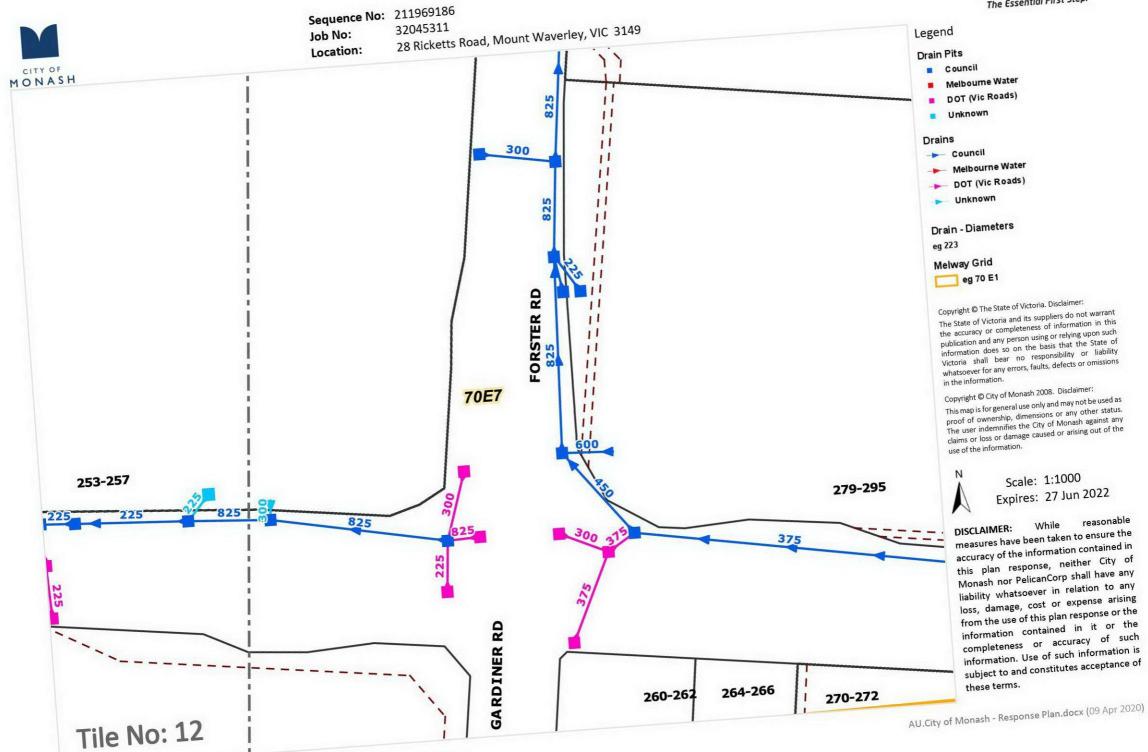
Plans generated 30 May 2022 by Pelicancorp TicketAccess Software | www.pelicancorp.com

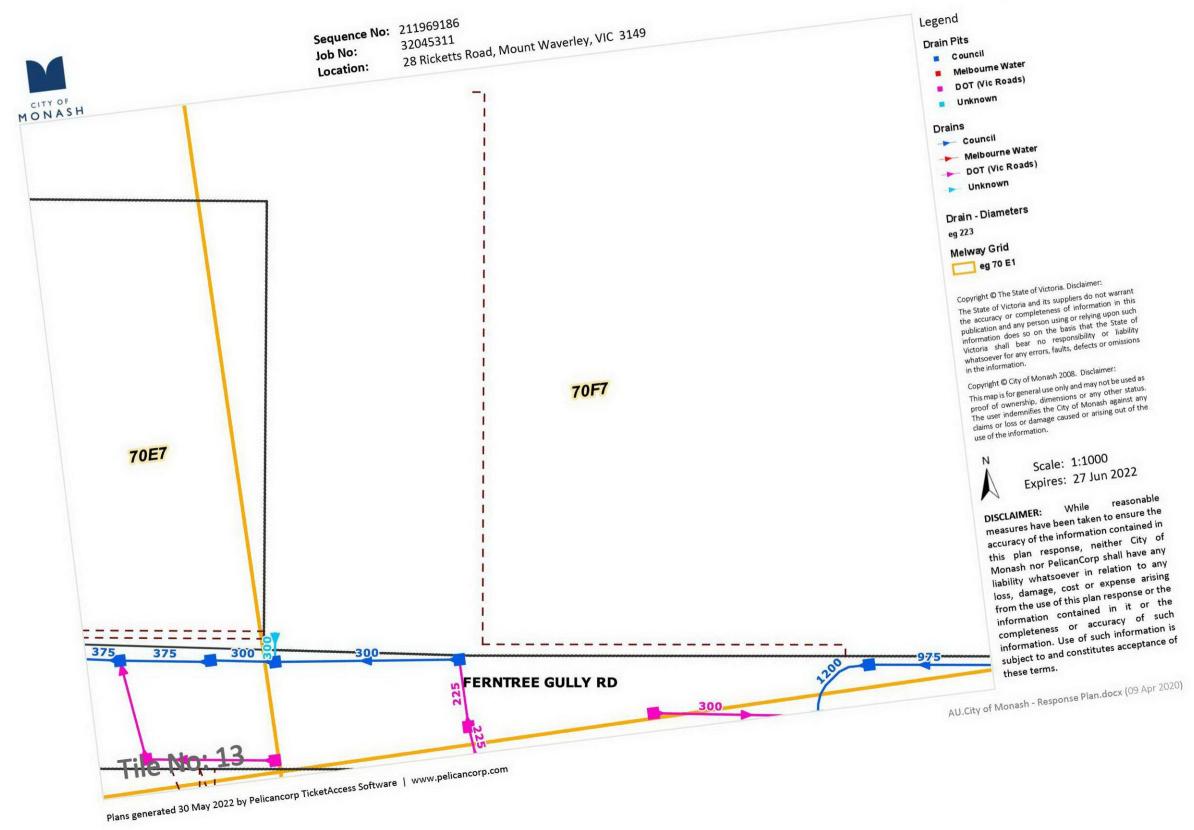


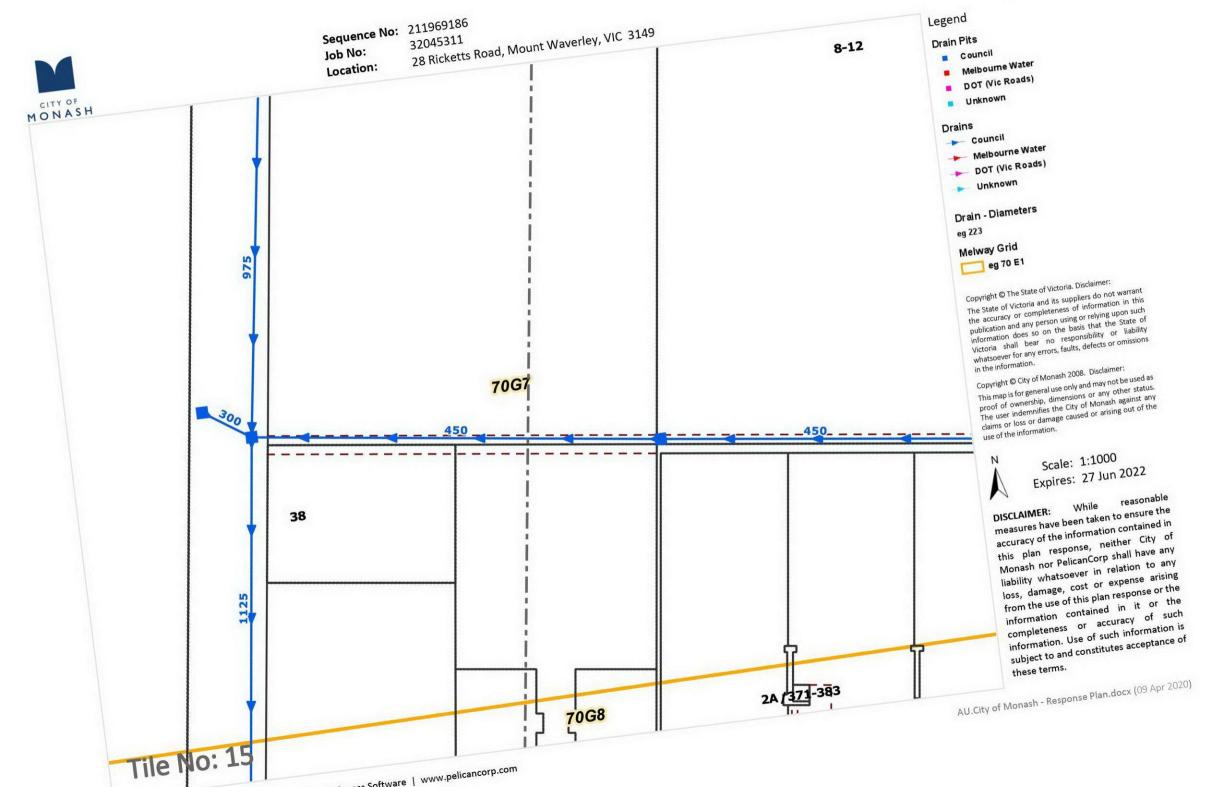
measures have been taken to ensure the accuracy of the information contained in this plan response, neither City of Monash nor PelicanCorp shall have any liability whatsoever in relation to any loss, damage, cost or expense arising from the use of this plan response or the information contained in it or the completeness or accuracy of such information. Use of such information is subject to and constitutes acceptance of D22-412314

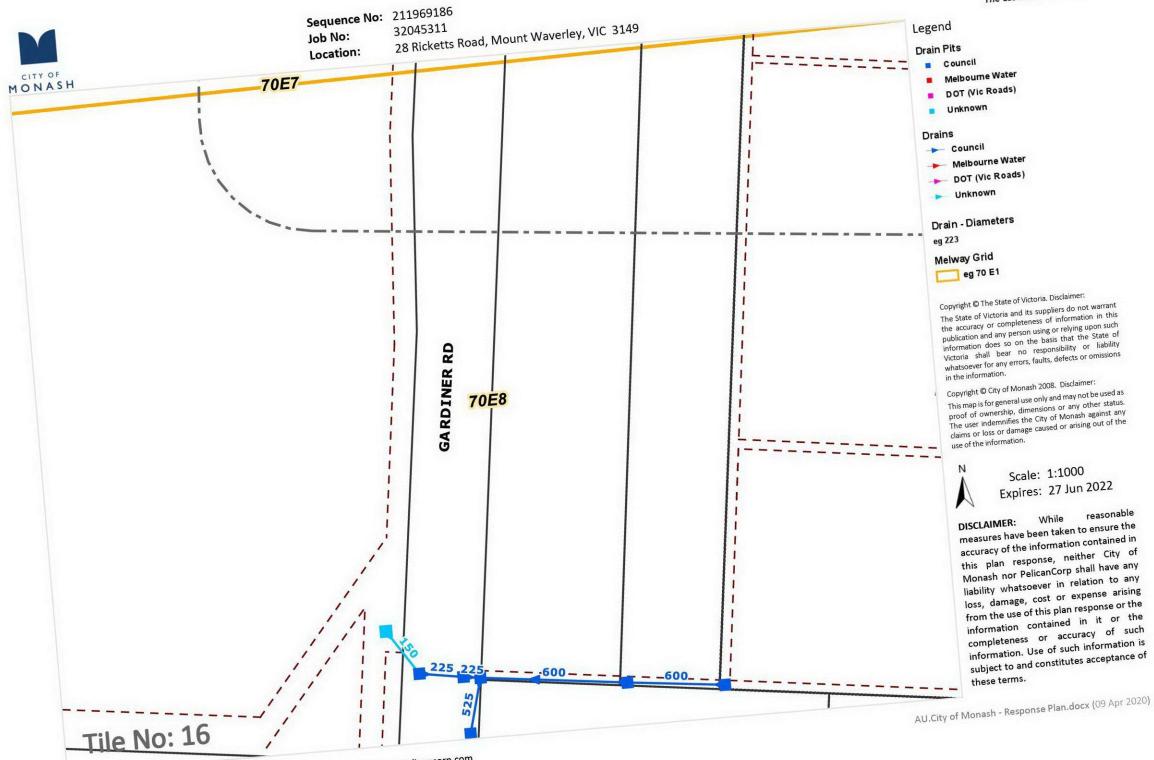

Sequence No: 211969186 **Job No:** 32045311

Location: 28 Ricketts Road, Mount Waverley, VIC 3149

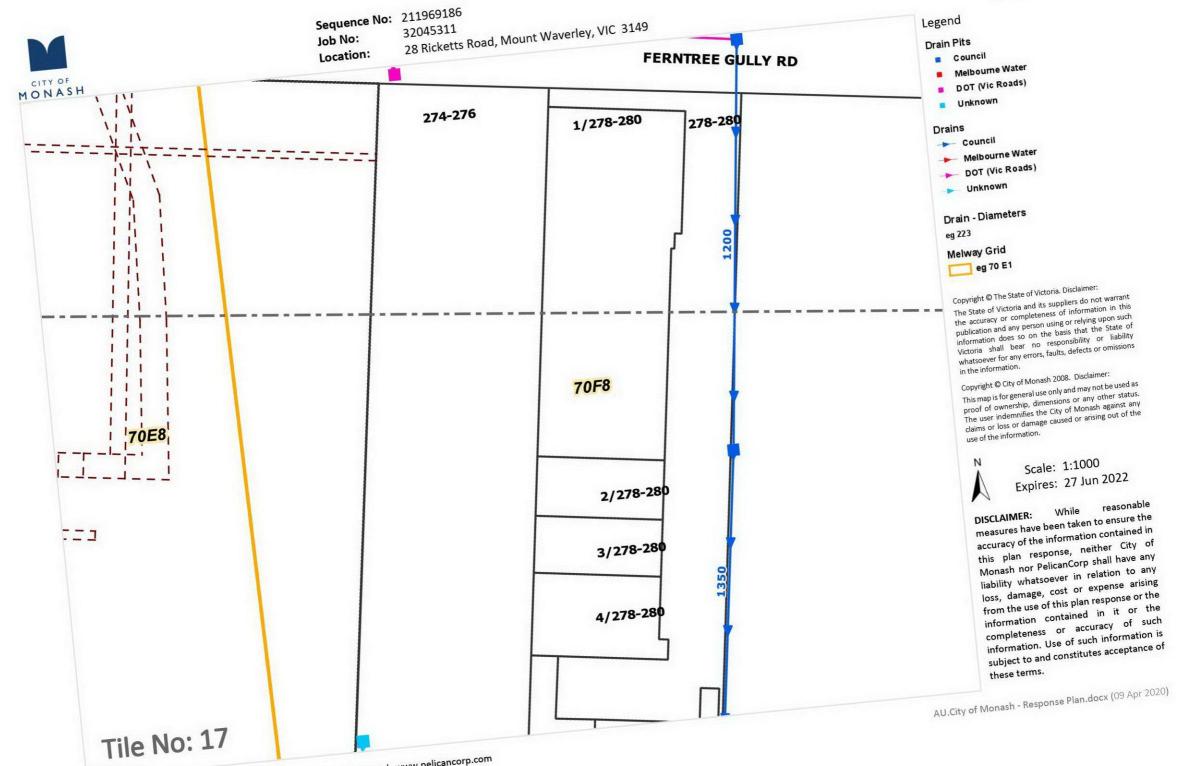


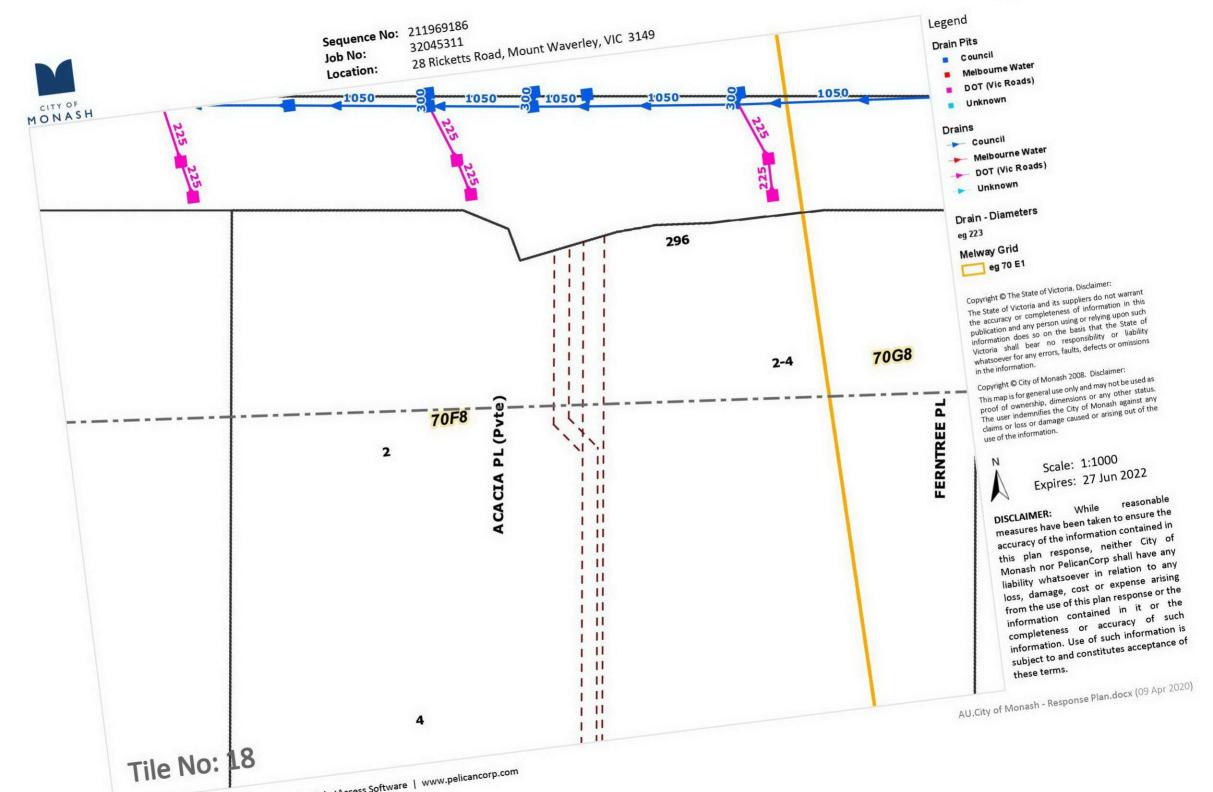


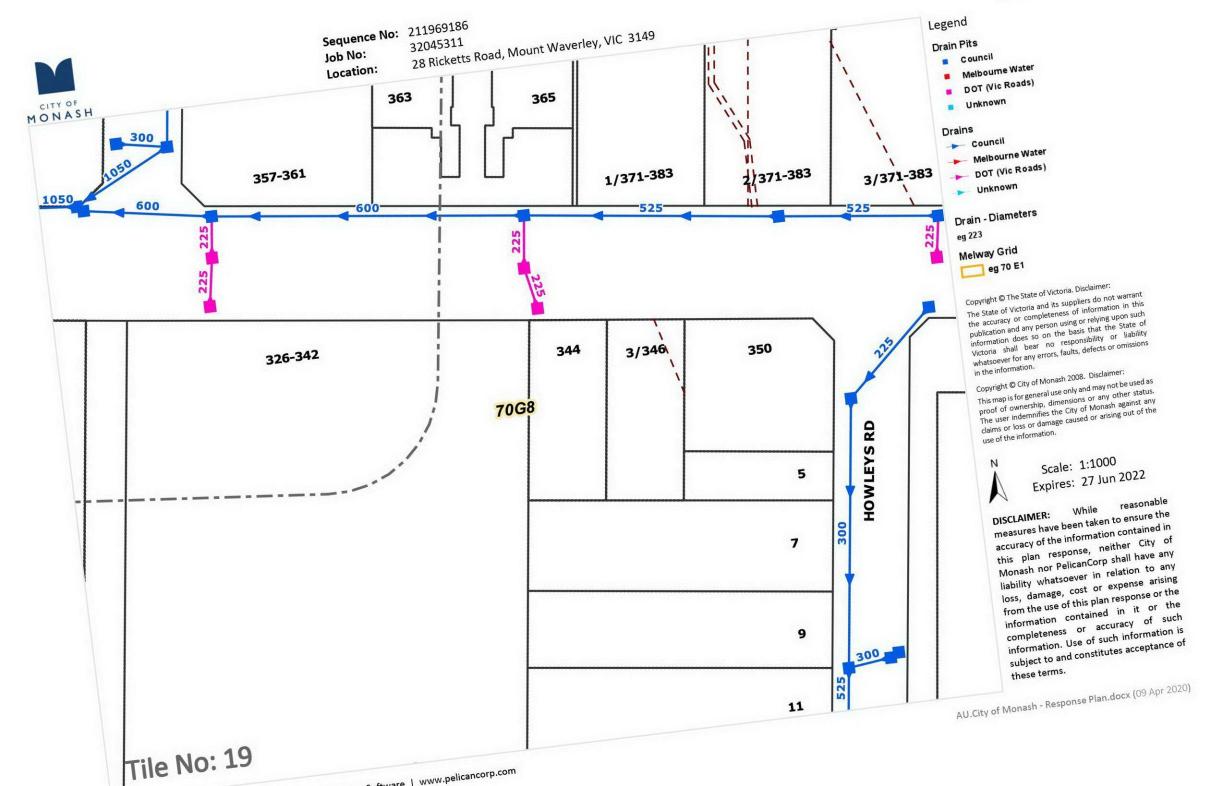



Sequence No: 211969186 DIAL BEFORE Job No: 32045311 YOU DIG Location: 28 Ricketts Road, Mount Waverley, VIC 3149 MONASH The Essential First Step. Legend Drain Pits Council Melbourne Water DOT (Vic Roads) Unknown **Drains** Council Melbourne Water DOT (Vic Roads) Unknown Drain - Diameters eg 223 Melway Grid eg 70 E1 Copyright © The State of Victoria. Disclaimer: The State of Victoria and its suppliers do not warrant the accuracy or completeness of information in this 70G7 70F7 publication and any person using or relying upon such information does so on the basis that the State of Victoria shall bear no responsibility or liability whatsoever for any errors, faults, defects or omissions in the information. Copyright © City of Monash 2008. Disclaimer: This map is for general use only and may not be used as proof of ownership, dimensions or any other status. The user indemnifies the City of Monash against any claims or loss or damage caused or arising out of the use of the information. Scale: 1:1000 Expires: 27 Jun 2022 DISCLAIMER: While reasonable measures have been taken to ensure the accuracy of the information contained in this plan response, neither City of Monash nor PelicanCorp shall have any liability whatsoever in relation to any loss, damage, cost or expense arising from the use of this plan response or the information contained in it or the 329-355 completeness or accuracy of such information. Use of such information is subject to and constitutes acceptance of 70F8 70G8 these terms.

D22-412314







From: Anuja Adhikari
To: Sana Khaji

Subject: Drainage Advice - On-site Detention Design Flow Date: Wednesday, 24 August 2022 10:02:16 AM

Attachments:

image003.png image004.png image005.png image006.png image008.png ATT00001.png

Hi Sana

Please be advised that there will be no detention or contribution required for the development at this site as this is a industrial area.

So you can proceed with the design as per the building regulation and As3500.

Please follow below link if you wish to refer to Council's guide lines.

If the proposed development requires a planning permit to be obtained, drainage plans will need to be submitted for Council's approval as per the drainage permit condition. Refer below link for all the details.

https://www.monash.vic.gov.au/files/assets/public/edms/planning-development/asset-protection/city-of-monash-engineering-plan-checklist.pdf

Engineering Plan Checking Application | City of Monash

Thank you

Anuja

Anuja Adhikari

Development & Transport Engineer

Email:_Anuja.Adhikari@monash.vic.gov.au

Phone: 03 9518 3440 Mobile: 0400 149 174

National Relay Service: 1800 555 660

293 Springvale Road, Glen Waverley, VIC 3150

www.monash.vic.gov.au

From: Sana Khaji <sanak@dceng.com.au> Sent: Thursday, 18 August 2022 3:06 PM

To: Anuja Adhikari <Anuja.Adhikari@monash.vic.gov.au> **Subject:** RE: Drainage Advice - On-site Detention Design Flow

CAUTION: This email originated from outside the organisation. Do not click links or open attachments unless you recognise the sender and know the content is safe.

Just wanted to follow up and see if you have any advice regarding to the following address industrial development: 170 Forster Road, Mount Waverly.

Kind regards,

Sana Khaji Junior Engineer

DALTON CONSULTING ENGINEERS PTY LTD

melbourne . geelong . brisbane wurundjeri . wadawurrung . turrbal

D +61 3 9813 7453 T +61 3 9813 7400 E sanak@dceng.com.au

Email disclaimer | dceng.com.au

From: Sana Khaji < sanak@dceng.com.au > Sent: Wednesday, 20 July 2022 12:34 PM

To: Anuja Adhikari < <u>Anuja. Adhikari@monash.vic.gov.au</u>> **Subject:** RE: Drainage Advice - On-site Detention Design Flow

Hi Anuja,

Thanks for your response. The Address of the proposed development is :170 Forster Road, Mount Waverly. Can you also let me know if there is a specific guideline for the stormwater or drainage design for Monash City Council?

Kind regards,

Sana Khaji Junior Engineer

DALTON CONSULTING ENGINEERS PTY LTD

melbourne . geelong . brisbane wurundjeri . wadawurrung . turrbal

D +61 3 9813 7453 T +61 3 9813 7400 E sanak@dceng.com.au

Email disclaimer | dceng.com.au

From: Anuja Adhikari < Anuja. Adhikari@monash.vic.gov.au>

Sent: Wednesday, 20 July 2022 11:57 AM **To:** Sana Khaji <<u>sanak@dceng.com.au</u>>

Subject: Drainage Advice - On-site Detention Design Flow

Hi Sana

If the development is within the industrial area and is fully impervious, Council does not require any detention system to be installed.

Can you provide me with the address of the proposed development. I will provide detailed response specific for your development site.

Thank you

Anuja

Anuja Adhikari Development & Transport Engineer

Email: Anuja.Adhikari@monash.vic.gov.au

Phone: 03 9518 3440 Mobile: 0400 149 174

National Relay Service: 1800 555 660 293 Springvale Road, Glen Waverley, VIC 3150

www.monash.vic.gov.au

From: Sana Khaji <<u>sanak@dceng.com.au</u>>
Sent: Thursday, 7 July 2022 12:02 PM

To: mail@monash.vic.gov.au

Subject: On-site Detention Design Flow

CAUTION: This email originated from outside the organisation. Do not click links or open attachments unless you recognise the sender and know the content is safe.

Hi,

My name is Sana, and I am working as a civil engineer at Dalton Consulting Engineers (DCE). I am preparing a stormwater management strategy report and I need to calculate the on-site detention storage based on the City of Monash requirements. The subject site that I am working on its report is in industrial use and will be re-developed for industrial use. Can you please let me know what is the required design flow for on-site detention storage sizing? Is that 1.5 ARI?

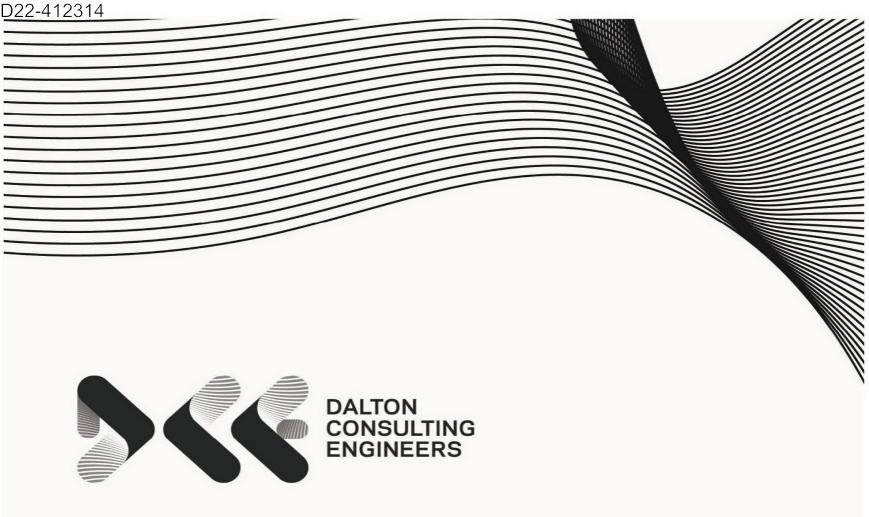
Kind regards,

Sana Khaji Junior Engineer

DALTON CONSULTING ENGINEERS PTY LTD

melbourne . geelong . brisbane wurundjeri . wadawurrung . turrbal

D +61 3 9813 7453 **T** +61 3 9813 7400 **E** sanak@dceng.com.au

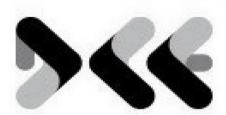


Email disclaimer | dceng.com.au

This email, including any attachments, is for the intended recipient only and may contain confidential, privileged or copyright material. If you received this email in error please advise the sender immediately by return email and delete it and all copies of it from your system. If you are not the intended recipient of this email, you must not use, print, distribute, copy or disclose its contents to anyone. Any personal information in this email must be handled in accordance with the Privacy and Data Protection Act 2014 (Vic)

Appendix B: Drainage Calculations

Stormwater Calculations

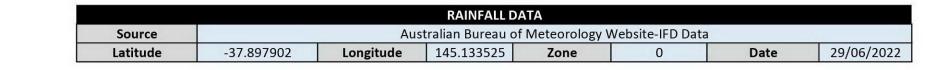

Axxess Corporate Park- Mt. Waverly

Revision B- September 2022

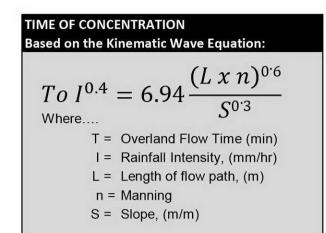
dexus

MAJOR STORM EVENT CATCHMENT PLAN

PROJECT DETAILS	
Job Description:	Axxess Corporate Park- Mount Waverly
Job Number:	22058
Compiled by:	S Khaji
Date:	12/09/2022



Existing Catchment Plan Developed Catchment Plan

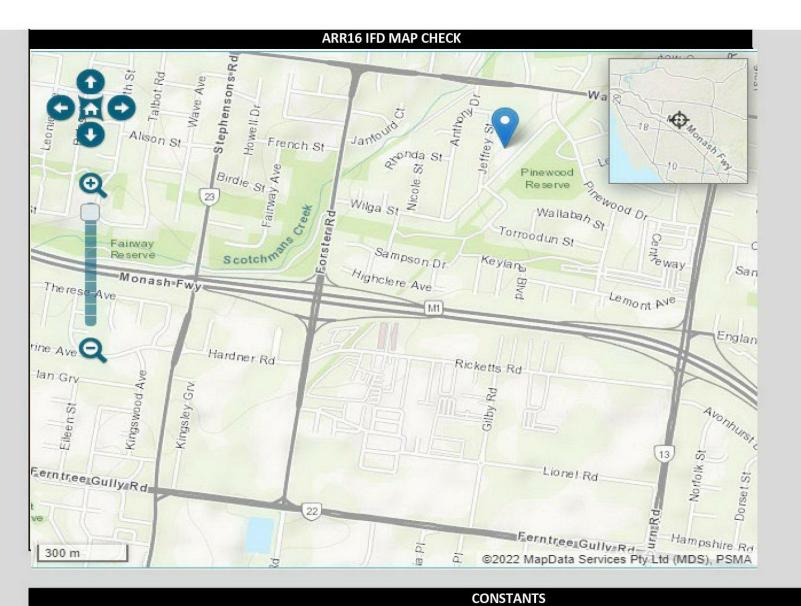


0.151008839

CATCHMENT DETAILS (ALL AREAS IN HECTARES									
	Sub-Catch 1	Sub-Catch 2	Sub-Catch 3	Sub-Catch 4	Sub-Catch 5				
Name	Industrial	Open Space	Local Roads	Major Roads	Impervious				
Fraction Imp. (f)	0.9	0.1	0.7	0.8	1				
C'10	0.825	0.226	0.675	0.750	0.900				
C Minor 1	0.825	0.226	0.675	0.750	0.900				
C Minor 2	0.784	0.215	0.642	0.713	0.855				
C Major	0.990	0.271	0.810	0.900	1.080	Minor 1/2?	Minor 1 Ae	Minor 2 Ae	Major Ae
Existing Catchment	6.0					1	4.951	0.000	5.941
Developed Catchment	6.0					1	4.951	0.000	5.941
Developed Catchment+ External	8.2		1			1	6.766	0.000	8.119
D						1	0.000	0.000	0.000
E						1	0.000	0.000	0.000
F						1	0.000	0.000	0.000
G						1	0.000	0.000	0.000
H						1	0.000	0.000	0.000
						1	0.000	0.000	0.000
J						1	0.000	0.000	0.000
K						1	0.000	0.000	0.000
L						1	0.000	0.000	0.000
M						1	0.000	0.000	0.000
N			1			1	0.000	0.000	0.000
0						1	0.000	0.000	0.000
P			1			1	0.000	0.000	0.000
Q						1	0.000	0.000	0.000
R		T- T	To The state of th		70	1	0.000	0.000	0.000
S						1	0.000	0.000	0.000
T .						1	0.000	0.000	0.000
						²⁰			

PEAK FLOW
Based on the Rational Method:
Q = CIA
Where
Q = Peak Flow (cu.m/s)
C = Co-Efficient of Runoff
I = Rainfall Intensity, (mm/hr)
A= Area (hectares)

												FLOW CALCULA	ATIONS															
Section			Contributing Catchments								Length (m)	Initial T (min)	Surface		S = Slope	Minor 1 ToC	Minor 1 I	Minor 1 Ae	Minor 1 Q	Minor 2 ToC	Minor 2 1	Minor 2 Ae	Minor 2 Q	Major ToC	Major I	Major Ae		Q Overland
Section	Existing Catchment	Developed Catchment	Developed Catchment+ External	D E	F G F	l I J	K L	M N O	P Q	R S T	Length (m)	initial i (min)	Surface		(m/m)	(min)	(mm/hr)	(ha)	(m3/s)	(min)	(mm/hr)	(ha)	(m3/s)	(min)	(mm/hr)	(ha)	(m3/s)	(m3/s)
1 (Existing)	Υ										523	5.0	Asphalt	0.015	0.013	21.369	56.719	4.951	0.78	22.977	46.019	0.000	0.000	17.702	105.555	5.941	1.74	1.0
1 (Developed)		Υ									550	5.0	Asphalt	0.015	0.013	22.351	55.180	4.951	0.76	24.063	43.698	0.000	0.000	18.444	102.163	5.941	1.69	0.9
1			Υ								581	5.0	Asphalt	0.015	0.017	21.188	56.719	6.766	1.07	22.779	46.019	0.000	0.000	17.567	105.555	8.119	2.38	1.315


					RAINFALL DATA					
Source			Australian Bure	au of Meteorology \	Website-IFD Data					
Latitude	-37.897902	Longitude	145.133525	Zone		Date	29/06/2022			
				Annı	ual Exceedance Prok	oability (AEP) Coeffi	cients			
	4EY	2EY	1EY	0.2EY	50% AEP*	20% AEP*	10% AEP	5% AEP	2% AEP	1% AEP
CO	-1.33E-01	1.87E-01	4.72E-01	9.09E-01	5.84E-01	8.89E-01	1.07E+00	1.22E+00	1.41E+00	1.55E+00
C1	8.62E-01	8.16E-01	7.71E-01	7.20E-01	7.55E-01	7.20E-01	6.77E-01	6.36E-01	5.13E-01	4.20E-01
C2	-5.00E-02	-2.48E-03	3.55E-02	8.10E-02	5.14E-02	8.10E-02	1.25E-01	1.69E-01	3.12E-01	4.19E-01
C3	-2.01E-02	-4.19E-02	-5.64E-02	-6.70E-02	-6.10E-02	-6.70E-02	-8.26E-02	-9.81E-02	-1.57E-01	-2.01E-01
C4	6.26E-03	1.06E-02	1.29E-02	1.29E-02	1.33E-02	1.29E-02	1.51E-02	1.75E-02	2.85E-02	3.67E-02
C5	-6.67E-04	-1.05E-03	-1.20E-03	-9.91E-04	-1.18E-03	-9.91E-04	-1.13E-03	-1.28E-03	-2.23E-03	-2.95E-03
C6	2.48E-05	3.72E-05	4.05E-05	2.60E-05	3.79E-05	2.60E-05	2.83E-05	3.18E-05	6.31E-05	8.69E-05
NOTE:										

The coefficients can be applied to estimate the design rainfall depth for a full range of durations from 1 minute to 7 days.

It is recommended that only three significant figures are used when undertaking calculations using design rainfalls generated in this way.

*The 50% AEP IFD does not correspond to the 2 year Average Recurrence Interval (ARI) IFD. Rather it corresponds to the 1.44 ARI.

ıration (mins)	4EY	2EY	1EY	0.2EY	50% AEP	20% AEP	10% AEP	5% AEP	2% AEP	1% AEP
1	52.532	72.319	96.166	148.874	107.569	145.955	174.418	204.242	246.976	282.303
2	46.346	62.852	82.145	125.015	91.409	122.563	144.594	167.246	195.399	217.657
3	41.700	56.505	73.673	112.345	82.044	110.142	130.216	150.924	177.629	198.954
4	38.086	51.611	67.258	102.991	75.000	100.972	119.763	139.241	165.393	186.530
5	35.187	47.670	62.106	95.476	69.338	93.604	111.339	129.796	155.325	176.153
6	32.800	44.409	57.840	89.210	64.637	87.461	104.266	121.812	146.589	166.944
7	30.793	41.657	54.231	83.866	60.650	82.221	98.192	114.908	138.854	158.628
8	29.077	39.296	51.129	79.236	57.215	77.682	92.897	108.850	131.934	151.066
9	27.589	37.244	48.428	75.174	54.217	73.700	88.226	103.478	125.701	144.168
10	26.284	35.440	46.051	71.575	51.574	70.172	84.067	98.674	120.055	137.85
11	25.127	33.840	43.940	68.360	49.222	67.020	80.337	94.348	114.918	132.06
12	24.093	32.409	42.050	65.467	47.113	64.183	76.969	90.429	110.224	126.74
13	23.162	31.119	40.346	62.846	45.209	61.614	73.910	86.858	105.920	121.83
14	22.319	29.951	38.801	60.460	43.481	59.275	71.117	83.591	101.958	117.29
15	21.550	28.886	37.393	58.277	41.904	57.134	68.555	80.589	98.300	113.09
16	20.846	27.911	36.102	56.270	40.458	55.167	66.197	77.819	94.913	109.19
17	20.199	27.014	34.915	54.418	39.127	53.351	64.017	75.255	91.767	105.55
18	19.600	26.185	33.819	52.704	37.896	51.670	61.995	72.874	88.837	102.16
19	19.045	25.418	32.803	51.111	36.755	50.108	60.114	70.656	86.102	98.99
20	18.529	24.704	31.858	49.626	35.693	48.653	58.360	68.585	83.544	96.02
21	18.047	24.037	30.977	48.239	34.702	47.293	56.719	66.647	81.145	93.23
22	17.596	23.415	30.153	46.940	33.775	46.019	55.180	64.827	78.891	90.61
23	17.172	22.830	29.380	45.720	32.906	44.823	53.735	63.117	76.770	88.14
24	16.774	22.281	28.654	44.572	32.089	43.698	52.373	61.505	74.769	85.80
25	16.399	21.764	27.970	43.489	31.319	42.636	51.089	59.983	72.879	83.60
26	16.044	21.276	27.325	42.466	30.592	41.634	49.875	58.545	71.091	81.52
27	15.708	20.814	26.715	41.498	29.905	40.685	48.725	57.182	69.397	79.54
28	15.390	20.376	26.137	40.581	29.254	39.785	47.635	55.889	67.789	77.67
29	15.088	19.961	25.589	39.710	28.636	38.931	46.600	54.660	66.261	75.88
30	14.800	19.566	25.068	38.881	28.049	38.119	45.615	53.492	64.807	74.19
31	14.526	19.190	24.573	38.092	27.490	37.345	44.677	52.378	63.423	72.57
32	14.265	18.832	24.101	37.340	26.957	36.608	43.782	51.316	62.102	71.03
33	14.015	18.490	23.650	36.622	26.449	35.904	42.928	50.302	60.841	69.56
34	13.776	18.164	23.219	35.936	25.964	35.231	42.112	49.333	59.635	68.15
35	13.547	17.851	22.808	35.279	25.499	34.588	41.331	48.405	58.481	66.81
36	13.328	17.551	22.413	34.651	25.055	33.971	40.582	47.516	57.377	65.52
37	13.118	17.264	22.035	34.047	24.628	33.380	39.865	46.663	56.317	64.28
38	12.915	16.988	21.673	33.469	24.219	32.812	39.176	45.845	55.301	63.10
39	12.721	16.723	21.324	32.913	23.826	32.267	38.514	45.059	54.325	61.96
40	12.534	16.468	20.990	32.378	23.448	31.743	37.878	44.303	53.387	60.87
41	12.354	16.223	20.667	31.863	23.085	31.239	37.266	43.576	52.484	59.82
42	12.180	15.987	20.357	31.368	22.735	30.753	36.676	42.876	51.616	58.81
43	12.012	15.759	20.058	30.890	22.397	30.285	36.108	42.201	50.779	57.83
44 45	11.850	15.539 15.227	19.770	30.430	22.072	29.833	35.559	41.550	49.972	56.89
45	11.694	15.327	19.491	29.985	21.758	29.397	35.030	40.921	49.194	55.99 55.13
46	11.542	15.121	19.222	29.556	21.455	28.976	34.519	40.315 39.728	48.442	55.12 54.27
48	11.396	14.923 14.731	18.962	29.140	21.161 20.878	28.569	34.026 33.548	39.728	47.716 47.015	54.27
48	11.254 11.117	14.731	18.711 18.468	28.739 28.350	20.603	28.175 27.795	33.086	38.612	46.336	53.46 52.67
50	10.983	14.365	18.232	27.974	20.338	27.426	32.638	38.081	45.680	51.91
55	10.373	13.542	17.157	26.258	19.125	25.743	30.598	35.660	42.692	48.44
60	9.843	12.828	16.226	24.774	18.076	24.288	28.835	33.570	40.118	45.46
65		12.828		23.477	17.158			33.570		42.87
70	9.376 8.962	12.202	15.412 14.692	22.333	16.348	23.017 21.895	27.296 25.938	30.138	37.877 35.908	42.87
75	8.591	11.153	14.051	21.315	15.626	20.897	25.938	28.711	34.164	38.59
80	8.257	10.709	13.475	20.402	14.978	20.002	23.652	27.434	32.607	36.80
85	7.954	10.306	12.956	19.580	14.394	19.196	22.679	26.285	31.208	35.19
90	7.954	9.940	12.483	18.834	13.863	18.464	21.798	25.245	29.944	33.74

C'10
0.11508008
0.11508008
0.16031382
0.15445632
0.16031382
0.15445632
0.15100884

Zone	Frac. Impervious
Lot <450sq.m	0.8
Lot 450-600sq.m	0.7
Lot 600-1000sq.m	0.6
Lot 1000-4000sq.m	0.3
Major Roads	0.8
Local Roads	0.7
Drainage Reserve	0.25
Open Space	0.1
Schools	0.7
Mixed Use Zone	0.7
Industrial	0.9
Medium Density	0.9
Health/Community	0.7
Impervious	1

Pit Type	
SEP	- 1
GEP	

Co-Ordin	ate Type
Easting	Latitude
Northing	Longitude

	Frequency Factor
4EY	0.80
2EY	0.80
1EY	0.80
0.2EY	0.95
50% AEP	0.85
20% AEP	0.95
10% AEP	1.00
5% AEP	1.05
2% AEP	1.15
1% AEP	1.20

Surface	FR
Smooth Concrete	0.013
Asphalt	0.015
Road Reserve	0.02
Earth Channel	0.025
Grass Channel	0.035
OTHER	

Pipe Type	Mannings
PE	0.01
PP	0.01
PVC	0.01
RC	0.013
VC.	0.015

Y or N?	
Υ	
N	

7
2
Pipe Sizes

Pipe Sizes	No. of Pipes
225	1
300	2
375	3
450	4
525	5
600	
675	
750	
825	
900	
1050	
1200	
1350	
1500	
1650	
1800	

Storm
Minor 1
Minor 2
Major
Overland

18140 - Frequency Factor Ratio, F(AEP)

PEAK FLOW CALCULATION SHEET RATIONAL METHOD, ARR16

Job Name: Axxess Corporate Park, Mount Waverley

Job Number: 22058
Compiled by: S Khaji
Date: 9/09/2022

ARI	AEP	FREQUENCY
(1 in x years)	(%)	FACTOR, F_{AEP}
100	1	1.20
50	2	1.15
20	5	1.05
10	10	1.00
5	18.13	0.95
4.48	20	0.94
2	50	0.85
1	63.21	0.80

orporate Park, Mount Waverley Job Name:

22058 Job Number: S Khaji Compiled by: 9/09/2022 Date:

IFD DATA - FREQUENT AND INFREQUENT EVENTS

Copyright Commonwealth of Australia 2016 Bureau of Meteorology (ABN 92 637 533 532)

IFD Design Rainfall Intensity (mm/h)

Issued: 9-Sep-22 Location

Requested coordinat Latitude

-37.8973 Longitude 145.12982 37.8875 (S) Longitude 145.1375 (E) Nearest grid cell: Latitude

IFD DATA - FREQUENT AND INFREQUENT EVENTS

Copyright Commonwealth of Australia 2016 Bureau of Meteorology (ABN 92 637 533 532)

Very Frequent Design Rainfall Intensity (mm/h)

Issued: 9-Sep-22

Location -37.8973 Longitude 145.12982 37.8875 (S) Longitude 145.1375 (E) Requested coordina Latitude Nearest grid cell: Latitude

		Annual Excee	dance Proba	bility (AEP)							Exceedance p	er Year (EY)						
Duration	Duration in min	63.20%	50%	20%	10%	5%	2%	1%	Duration	Duration in min	12EY	6EY	4EY	3EY	2EY	1EY	0.5EY	0.2EY
1 min	1	96.2	108	146	174	204	247	282	1 min	1	37.1	42.5	52.5	60.3	72.3	96.2	119	149
2 min	2	82.1	91.4	123	145	167	195	218	2 min	2	33.1	37.8	46.3	52.9	62.9	82.1	101	125
3 min	3	73.7	82	110	130	151	178	199	3 min	3	29.8	34	41.7	47.6	56.5	73.7	91.1	112
4 min	4	67.3	75	101	120	139	165	187	4 min	4	27.2	31	38.1	43.5	51.6	67.3	83.2	103
5 min	5	62.1	69.3	93.6	111	130	155	176	5 min	5	25.1	28.7	35.2	40.1	47.7	62.1	77	95.5
10 min	10	46.1	51.6	70.2	84.1	98.7	120	138	10 min	10	18.9	21.5	26.3	29.9	35.4	46.1	57.2	71.6
15 min	15	37.4	41.9	57.1	68.6	80.6	98.3	113	15 min	15	15.7	17.7	21.6	24.5	28.9	37.4	46.5	58.3
20 min	20	31.9	35.7	48.7	58.4	68.6	83.5	96	20 min	20	13.6	15.3	18.5	21	24.7	31.9	39.6	49.6
25 min	25	28	31.3	42.6	51.1	60	72.9	83.6	25 min	25	12.1	13.6	16.4	18.5	21.8	28	34.8	43.5
30 min	30	25.1	28	38.1	45.6	53.5	64.8	74.2	30 min	30	11	12.3	14.8	16.7	19.6	25.1	31.1	38.9
45 min	45	19.5	21.8	29.4	35	40.9	49.2	56	45 min	45	8.74	9.78	11.7	13.1	15.3	19.5	24.2	30
1 hour	60	16.2	18.1	24.3	28.8	33.6	40.1	45.5	1 hour	60	7.4	8.27	9.84	11	12.8	16.2	20.1	24.8
1.5 hour	90	12.5	13.9	18.5	21.8	25.2	29.9	33.7	1.5 hour	90	5.81	6.47	7.68	8.59	9.94	12.5	15.4	18.8
2 hour	120	10.4	11.5	15.2	17.9	20.6	24.3	27.3	2 hour	120	4.86	5.41	6.42	7.17	8.28	10.4	12.7	15.5
3 hour	180	7.95	8.79	11.5	13.5	15.5	18.3	20.5	3 hour	180	3.76	4.19	4.96	5.54	6.39	7.95	9.75	11.8
4.5 hour	270	6.1	6.74	8.8	10.3	11.8	13.9	15.5	4.5 hour	270	2.88	3.22	3.82	4.26	4.92	6.1	7.48	8.98
6 hour	360	5.06	5.59	7.29	8.5	9.73	11.5	12.9	6 hour	360	2.38	2.66	3.16	3.53	4.08	5.06	6.2	7.44
9 hour	540	3.88	4.29	5.62	6.56	7.5	8.89	10	9 hour	540	1.8	2.02	2.41	2.7	3.12	3.88	4.77	5.73
12 hour	720	3.21	3.56	4.68	5.47	6.28	7.47	8.42	12 hour	720	1.48	1.66	1.98	2.22	2.57	3.21	3.95	4.77
18 hour	1080	2.45	2.72	3.62	4.26	4.9	5.86	6.63	18 hour	1080	1.11	1.25	1.5	1.68	1.95	2.45	3.02	3.69
24 hour	1440	2.01	2.24	3.01	3.56	4.11	4.93	5.59	24 hour	1440	0.901	1.01	1.22	1.37	1.59	2.01	2.49	3.08
30 hour	1800	1.71	1.92	2.61	3.09	3.59	4.3	4.88	30 hour	1800	0.765	0.861	1.03	1.16	1.36	1.71	2.14	2.66
36 hour	2160	1.5	1.69	2.31	2.75	3.2	3.84	4.35	36 hour	2160	0.669	0.752	0.903	1.02	1.19	1.5	1.88	2.36
48 hour	2880	1.22	1.38	1.9	2.27	2.65	3.18	3.59	48 hour	2880	0.539	0.606	0.728	0.82	0.957	1.22	1.53	1.94
72 hour	4320	0.894	1.01	1.41	1.7	1.99	2.38	2.68	72 hour	4320	0.395	0.444	0.533	0.601	0.702	0.894	1.12	1.44
96 hour	5760	0.713	0.808	1.12	1.35	1.59	1.89	2.12	96 hour	5760	0.316	0.355	0.427	0.481	0.562	0.713	0.897	1.14
120 hour	7200	0.597	0.674	0.927	1.11	1.31	1.56	1.75	120 hour	7200	0.265	0.299	0.359	0.405	0.472	0.597	0.748	0.945
144 hour	8640	0.516	0.579	0.785	0.941	1.11	1.31	1.47	144 hour	8640	0.229	0.259	0.313	0.352	0.41	0.516	0.643	0.801
168 hour	10080	0.455	0.508	0.677	0.808	0.949	1.13	1.27	168 hour	10080	0.202	0.229	0.278	0.314	0.365	0.455	0.564	0.69

Axxess Corporate Park, Mount Waverley Job Name:

Job Number: 22058 Compiled by: S Khaji Date: 9/09/2022

IFD DATA - RARE EVENTS

Copyright Commonwealth of Australia 2016 Bureau of Meteorology (ABN 92 637 533 532)

IFD Design Rainfall Intensity (mm/h) 9-Sep-22 Issued:

Location

Requested coordinat Latitude -37.8973 Longitude 145.12982 Nearest grid cell: Latitude 37.8875 (S) Longitude 145.1375 (E)

IFD DATA - FREQUENT AND INFREQUENT EVENTS

Copyright Commonwealth of Australia 2016 Bureau of Meteorology (ABN 92 637 533 532)

Rare Design Rainfall Intensity (mm/h) 9-Sep-22

Issued:

Location

Requested c Latitude -37.8973 Longitude 145.12982 Nearest grid Latitude 37.8875 (S) Longitude 145.1375 (E)

	Ar	nnual Exceeda	nce Probability	(AEP)							Е	xceedance p	er Year (EY)			
Duration Duration in r	min	63.20%	50%	20%	10%	5%	2%	1%	Duration	Duration in min		1 in 100	1 in 200	1 in 500	1 in 1000	1 in 2000
1 min	1	96.2	108.0	146.0	174.0	204.0	247.0	282.0	1 min		1	282.0	328.0	384.0	430.0	480.0
2 min	2	82.1	91.4	123.0	145.0	167.0	195.0	218.0	2 min		2	218.0	248.0	287.0	319.0	353.0
3 min	3	73.7	82.0	110.0	130.0	151.0	178.0	199.0	3 min		3	199.0	228.0	265.0	295.0	327.0
4 min	4	67.3	75.0	101.0	120.0	139.0	165.0	187.0	4 min		4	187.0	215.0	250.0	280.0	311.0
5 min	5	62.1	69.3	93.6	111.0	130.0	155.0	176.0	5 min		5	176.0	204.0	238.0	266.0	296.0
10 min	10	46.1	51.6	70.2	84.1	98.7	120.0	138.0	10 min		10	138.0	160.0	188.0	211.0	236.0
15 min	15	37.4	41.9	57.1	68.6	80.6	98.3	113.0	15 min		15	113.0	132.0	155.0	173.0	194.0
20 min	20	31.9	35.7	48.7	58.4	68.6	83.5	96.0	20 min		20	96.0	112.0	131.0	147.0	164.0
25 min	25	28.0	31.3	42.6	51.1	60.0	72.9	83.6	25 min		25	83.6	97.1	114.0	127.0	142.0
30 min	30	25.1	28.0	38.1	45.6	53.5	64.8	74.2	30 min		30	74.2	86.0	101.0	113.0	126.0
45 min	45	19.5	21.8	29.4	35.0	40.9	49.2	56.0	45 min		45	56.0	64.8	75.7	84.7	94.3
1 hour	60	16.2	18.1	24.3	28.8	33.6	40.1	45.5	1 hour		60	45.5	52.5	61.3	68.6	76.3
1.5 hour	90	12.5	13.9	18.5	21.8	25.2	29.9	33.7	1.5 hour		90	33.7	39.0	45.5	50.9	56.6
2 hour	120	10.4	11.5	15.2	17.9	20.6	24.3	27.3	2 hour		120	27.3	31.6	37.0	41.3	46.0
3 hour	180	8.0	8.8	11.5	13.5	15.5	18.3	20.5	3 hour		180	20.5	23.8	27.8	31.2	34.8
4.5 hour	270	6.1	6.7	8.8	10.3	11.8	13.9	15.5	4.5 hour		270	15.5	18.1	21.2	23.8	26.6
6 hour	360	5.1	5.6	7.3	8.5	9.7	11.5	12.9	6 hour		360	12.9	15.0	17.7	19.9	22.3
9 hour	540	3.9	4.3	5.6	6.6	7.5	8.9	10.0	9 hour		540	10.0	11.7	13.8	15.5	17.4
12 hour	720	3.2	3.6	4.7	5.5	6.3	7.5	8.4	12 hour		720	8.4	9.9	11.6	13.1	14.7
18 hour	1080	2.5	2.7	3.6	4.3	4.9	5.9	6.6	18 hour	1	1080	6.6	7.7	9.1	10.2	11.4
24 hour	1440	2.01	2.24	3.01	3.56	4.11	4.93	5.59	24 hour	1	1440	5.59	6.48	7.59	8.5	9.49
30 hour	1800	1.71	1.92	2.61	3.09	3.59	4.3	4.88	30 hour	1	1800	4.88	5.64	6.58	7.35	8.17
36 hour	2160	1.5	1.69	2.31	2.75	3.2	3.84	4.35	36 hour	2	2160	4.35	5	5.81	6.46	7.16
48 hour	2880	1.22	1.38	1.9	2.27	2.65	3.18	3.59	48 hour	2	2880	3.59	4.08	4.7	5.2	5.72
72 hour	4320	0.894	1.01	1.41	1.7	1.99	2.38	2.68	72 hour	4	4320	2.68	2.98	3.4	3.72	4.06
96 hour	5760	0.713	0.808	1.12	1.35	1.59	1.89	2.12	96 hour	5	5760	2.12	2.34	2.65	2.89	3.14
120 hour	7200	0.597	0.674	0.927	1.11	1.31	1.56	1.75	120 hour	7	7200	1.75	1.92	2.17	2.37	2.57
144 hour	8640	0.516	0.579	0.785	0.941	1.11	1.31	1.47	144 hour	8	3640	1.47	1.62	1.84	2	2.17
168 hour	10080	0.455	0.508	0.677	0.808	0.949	1.13	1.27	168 hour	10	0800	1.27	1.4	1.59	1.74	1.89

18140 - EX 1 in 500 AEP -Site +External

Job Name: Axxess Corporate Park, Mount Waverley

 Job Number:
 22058

 Compiled by:
 S Khaji

 Date:
 9/09/2022

Rational Method using ARR16 terminology

 $Q_{AEP} = C_{AEP} \times {}^{AEP}I_{tc} \times A / 360$

Where Q_{AEP} = design discharge for annual exceedance probability (AEP) (m³/s)

C = runoff coefficient for annual exceedance probability, AEP

AEP I_{tc} = rainfall intensity for the event and duration required (mm/h)

A = catchment area (ha)

 $C'_{10} = 0.1 + 0.0133 (^{10}I_1 - 25)$

Where C'_{10} is the pervious runoff coefficient

 10 l₁ is the 10 % AEP, 1 hour duration rainfall intensity (mm/h)

And,

 $C_{10} = 0.9f + C'_{10}(1-f)$

Where C₁₀ is the 10 % AEP runoff coefficient

f is the fraction impervious (0.0 to 1.0)

And,

 $C_Y = F_Y C_{10}$

Where C_Y is an average recurrence interval

F_{AEP} is a frequency factor

Rational Method Calculation

Known catchment area, ha

A =

ha

Determination of C'₁₀ value

 $^{10\%}I_{1h} = 28.80$

 $C'_{10} = 0.151$

Determination of C₁₀ value

f = 0.900

Based on aerial imagery

 $C_{10} = 0.825$

Calculation of runoff coefficient, C, for event, AEP

AEP = 0.2

 $F_{AEP} = 1.35$

 $C_{AEP} = 1.114$

Determination of Rainfall intensity at site based on BOM data

 $t_C = 20$ $^{AEP}I_{20} = 131$

min

mm/h

Based on 5 min for initiation time, and 857 metres (est) of pipe flow at assumed 1 m/s velocity, rounded down to 20 mins

Calculation of design discharge from site (m³/s)

 $Q_{AFP} = 2.984$

18140 - DEV 1 in 500 AEP-Site+External

Job Name: Axxess Corporate Park, Mount Waverley

Job Number: 22058
Compiled by: S Khaji
Date: 9/09/2022

Rational Method using ARR16 terminology

 $Q_{AEP} = C_{AEP} \times {}^{AEP}I_{tc} \times A / 360$

Where Q_{AEP} = design discharge for annual exceedance probability (AEP) (m³/s)

C = runoff coefficient for annual exceedance probability, AEP

AEP Itc = rainfall intensity for the event and duration required (mm/h)

A = catchment area (ha)

 $C'_{10} = 0.1 + 0.0133 (^{10}I_1 - 25)$

Where C'₁₀ is the pervious runoff coefficient

 10 l $_{1}$ is the 10 % AEP, 1 hour duration rainfall intensity (mm/h)

ha

And,

 $C_{10} = 0.9f + C'_{10}(1-f)$

Where C₁₀ is the 10 % AEP runoff coefficient

f is the fraction impervious (0.0 to 1.0)

And,

 $C_Y = F_Y C_{10}$

Where C_Y is an average recurrence interval

F_{AEP} is a frequency factor

Rational Method Calculation

Known catchment area, ha

A = 6.1

Determination of C'₁₀ value

 $^{10\%}$ I_{1h} = 28.80

 $C'_{10} = 0.151$

Determination of C₁₀ value

f = 0.877 Based on layout plan

 $C_{10} = 0.808$

Calculation of runoff coefficient, C, for event, AEP

AEP = 0.2

 $F_{AEP} = 1.35$

Runoff coefficient of > 1.0 is numerically possible, though conservative as not-

 $C_{AEP} = 1.091$ physically possible (runoff volume > rainfall volume)

Determination of Rainfall intensity at site based on BOM data

 $t_{\rm C} = 14$

min

mm/h

Based on 5 min for initiation time, and 580 metres (est) ofoverland flow at assumed 1 m/s velocity, rounded down to 14 mins

Calculation of design discharge from site (m³/s)

AEP I₁₄ = 160

 $Q_{AEP} = 2.711$

18140 - EX 1 in 500 AEP-Lot 1 and 2

Job Name: Axxess Corporate Park, Mount Waverley

Job Number: 22058 Compiled by: S Khaji 9/09/2022 Date:

Rational Method using ARR16 terminology

 $Q_{AEP} = C_{AEP} \times {}^{AEP}I_{tc} \times A / 360$

Where Q_{AFP} = design discharge for annual exceedance probability (AEP) (m³/s)

C = runoff coefficient for annual exceedance probability, AEP

AEP I_{tc} = rainfall intensity for the event and duration required (mm/h)

A = catchment area (ha)

 $C'_{10} = 0.1 + 0.0133 (^{10}I_1 - 25)$

Where C'_{10} is the pervious runoff coefficient

 10 l₁ is the 10 % AEP, 1 hour duration rainfall intensity (mm/h)

And,

 $C_{10} = 0.9f + C'_{10}(1-f)$

C₁₀ is the 10 % AEP runoff coefficient Where

f is the fraction impervious (0.0 to 1.0)

And,

 $C_Y = F_Y C_{10}$

Where C_Y is an average recurrence interval

F_{AEP} is a frequency factor

Rational Method Calculation

Known catchment area, ha

A =

6.1

Determination of C'₁₀ value

 $^{10\%}I_{1h} = 28.80$

 $C'_{10} = 0.151$

Determination of C₁₀ value

f = 0.900

Based on aerial imagery

 $C_{10} = 0.825$

Calculation of runoff coefficient, C, for event, AEP

AEP = 0.2

 $F_{AEP} = 1.35$

 $C_{AEP} = 1.114$

Determination of Rainfall intensity at site based on BOM data

 $t_{c} = 20$

min

ha

 $^{AEP}I_{20} = 131$

mm/h

Based on 5 min for initiation time, and 857 metres (est) of pipe flow at assumed 1 m/s velocity,

rounded down to 20 mins

Calculation of design discharge from site (m³/s)

 $Q_{AFP} = 2.220$

18140 - DEV 1 in 500 AEP-Lot 1 and 2

Job Name: Axxess Corporate Park, Mount Waverley

Job Number: 22058 Compiled by: S Khaji Date: 9/09/2022

Rational Method using ARR16 terminology

 $Q_{AEP} = C_{AEP} \times {}^{AEP}I_{tc} \times A / 360$

Where Q_{AEP} = design discharge for annual exceedance probability (AEP) (m³/s)

C = runoff coefficient for annual exceedance probability, AEP

AEP Itc = rainfall intensity for the event and duration required (mm/h)

A = catchment area (ha)

 $C'_{10} = 0.1 + 0.0133 (^{10}I_1 - 25)$

Where C'₁₀ is the pervious runoff coefficient

 10 l $_1$ is the 10 % AEP, 1 hour duration rainfall intensity (mm/h)

And,

 $C_{10} = 0.9f + C'_{10}(1-f)$

Where C₁₀ is the 10 % AEP runoff coefficient

f is the fraction impervious (0.0 to 1.0)

And,

 $C_Y = F_Y C_{10}$

Where C_Y is an average recurrence interval

F_{AEP} is a frequency factor

Rational Method Calculation

Known catchment area, ha

A =

ha

Determination of C'₁₀ value

 $^{10\%}$ I_{1h} = 28.80

 $C'_{10} = 0.151$

Determination of C₁₀ value

f = 0.900

Based on layout plan

 $C_{10} = 0.825$

Calculation of runoff coefficient, C, for event, AEP

AEP = 0.2

 $F_{AEP} = 1.35$

Runoff coefficient of > 1.0 is numerically possible, though conservative as not-

 $C_{AFP} = 1.114$

physically possible (runoff volume > rainfall volume)

Determination of Rainfall intensity at site based on BOM data

 $t_{\rm C} = 14$

mm/h

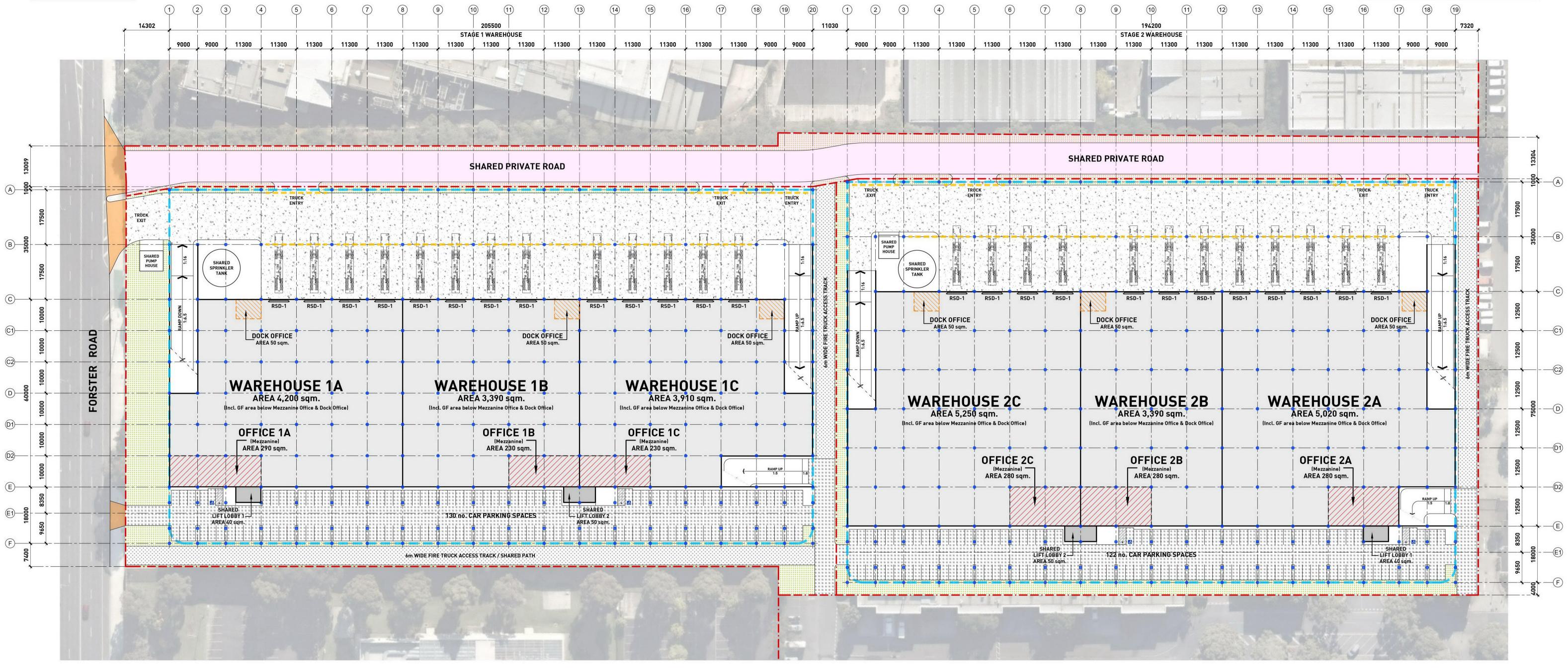
Based on 5 min for initiation time, and 580 metres (est) of overland flow at assumed 1 m/s velocity,

rounded down to 14 mins

Calculation of design discharge from site (m³/s)

AEP I₁₄ = 160

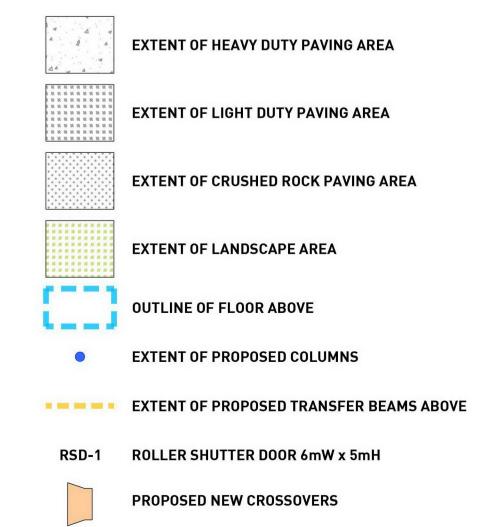
 $Q_{AEP} = 2.711$



Appendix C: Development Plan

__ ____

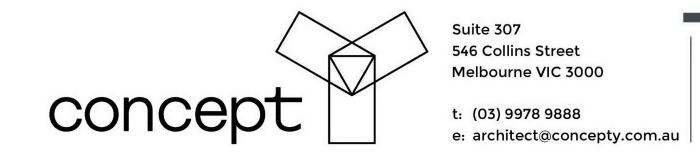
These drawings are subject to copyright and may not be copied, used or altered in any way without the expressed permission of Concept Y Pty Ltd. All areas and dimensions on drawings are approximate only and are subject to confirmation


FOR INFORMATION ONLY
SUBJECT TO STATUTORY APPROVAL

TOTAL DEVELOPMENT	SUMM	ARY
Proposed Stage 1 Site Area	27,696	sqm. approx.
Proposed Stage 2 Site Area	27,264	sqm. approx.
Shared Private Road Area	5,910	sqm. approx.
TOTAL SITE AREA	60,870	sqm. approx.
Total Stage 1 Building Area	37,620	sqm.
Total Stage 2 Building Area	43,070	sqm.
TOTAL BUILDING AREA	80,690	sqm.
Total Heavy Duty Paving Area (Excl. Circulation Ramp Areas)	48,120	sqm. approx.
Total Light Duty Paving Area (Excl. Circulation Ramp Areas)	18,600	sqm. approx.
Total Super Awning Area	9,890	sqm. approx.
Total Car Parking Provided	722	spaces

ADEA CUMMADY CT	ACE 4	
AREA SUMMARY - STA (Ground Floor)	AGE 1	
Warehouse 1A Area	4,200	sqm.
Office 1A Area (Mezzanine)	290	sqm.
Warehouse 1B Area	3,390	sqm.
Office 1B Area (Mezzanine)	230	sqm.
Warehouse 1C Area	3,910	sqm.
Office 1C Area (Mezzanine)	230	sqm.
Shared Lift Lobby 1 Area	40	sqm.
Shared Lift Lobby 2 Area	50	sqm.
TOTAL BUILDING AREA	12,340	sqm.
Total Heavy Duty Paving Area (Excl. Circulation Ramp Areas)	6,380	sqm. approx.
Total Light Duty Paving Area (Excl. Circulation Ramp Areas)	3,540	sqm. approx.
Total Car Parking Provided	130	spaces

(Ground Floor)		
Warehouse 2A Area	5,020	sqm.
Office 2A Area (Mezzanine)	280	sqm.
Warehouse 2B Area	3,390	sqm.
Office 2B Area (Mezzanine)	280	sqm.
Warehouse 2C Area	5,250	sqm.
Office 2C Area (Mezzanine)	280	sqm.
Shared Lift Lobby 1 Area	40	sqm.
Shared Lift Lobby 2 Area	50	sqm.
TOTAL BUILDING AREA	14,590	sqm.
Total Heavy Duty Paving Area (Excl. Circulation Ramp Areas)	5,920	sqm. approx.
Total Light Duty Paving Area (Excl. Circulation Ramp Areas)	3,220	sqm. approx.
Total Car Parking Provided	122	spaces



NOTE:

- This concept plan is intended for feasibility purposes only. No planning advice has been sought from statutory authorities in the preparation of this plan. All setbacks, site coverage, car parking numbers, landscape areas and the like are subject to statutory
- No assurance is given as to the features, attributes, feasibility or accuracy of anything shown on or disclosed in this plan.
- All existing & proposed features, dimensions, areas and boundaries are approximate only and subject to verification via detailed site survey by licensed surveyor.

CLIENT:

dexus

PROPOSED DEVELOPMENT

Axxess Corporate Park, 1-31 Gilby Road, Mount Waverley VIC

Appendix D: MUSIC Model Inputs and Results

Sources Residual Load % Reduction
Flow (ML/yr) 35.5 35 1.3

D22-412314

Gross Pollutants (kg/yr)

Flow (ML/ yl)	33.3	33	1.3
Total Suspended Solids (kg/yr)	7230	1350	81.3
Total Phosphorus (kg/yr)	14.6	5.75	60.6
Total Nitrogen (kg/yr)	102	51	50

1430

100

```
Source nodes
Location, Lot 1- 2.77 ha (mixed), Lot 2- 2.73 ha (mixed), Shared Paved Area- 0.6
ha (mixed)
ID,1,4,6
Node Type, UrbanSourceNode, UrbanSourceNode, UrbanSourceNode
Zoning Surface Type, Mixed, Mixed, Mixed
Total Area (ha),2.77,2.73,0.59
Area Impervious (ha),2.49155298507463,2.45557388059702,0.530691791044776
Area Pervious (ha),0.278447014925372,0.274426119402984,0.0593082089552237
Field Capacity (mm),50,50,50
Pervious Area Infiltration Capacity coefficient - a,200,200,200
Pervious Area Infiltration Capacity exponent - b,1,1,1
Impervious Area Rainfall Threshold (mm/day),1,1,1
Pervious Area Soil Storage Capacity (mm), 120, 120, 120
Pervious Area Soil Initial Storage (% of Capacity),25,25,25
Groundwater Initial Depth (mm), 10, 10, 10
Groundwater Daily Recharge Rate (%),25,25,25
Groundwater Daily Baseflow Rate (%),5,5,5
Groundwater Daily Deep Seepage Rate (%),0,0,0
Stormflow Total Suspended Solids Mean (log mg/L),2.2,2.2,2.2
Stormflow Total Suspended Solids Standard Deviation (log mg/L),0.32,0.32,0.32
Stormflow Total Suspended Solids Estimation
Method, Stochastic, Stochastic, Stochastic
Stormflow Total Suspended Solids Serial Correlation,0,0,0
Stormflow Total Phosphorus Mean (log mg/L),-0.45,-0.45,-0.45
Stormflow Total Phosphorus Standard Deviation (log mg/L),0.25,0.25,0.25
Stormflow Total Phosphorus Estimation Method, Stochastic, Stochastic, Stochastic
Stormflow Total Phosphorus Serial Correlation,0,0,0
Stormflow Total Nitrogen Mean (log mg/L),0.42,0.42,0.42
Stormflow Total Nitrogen Standard Deviation (log mg/L),0.19,0.19,0.19
Stormflow Total Nitrogen Estimation Method, Stochastic, Stochastic, Stochastic
Stormflow Total Nitrogen Serial Correlation,0,0,0
Baseflow Total Suspended Solids Mean (log mg/L),1.1,1.1,1.1
Baseflow Total Suspended Solids Stan
```


Appendix C Daylight Summary

This Daylight Summary provides an overview of the daylight study conducted through Green Star Hand Calculation method for the proposed development.

The project team is aiming to provide best practice daylight levels to the office spaces in the development, specifically:

> BESS >33% of the regularly used area achieves a daylight factor of at least 2.0.

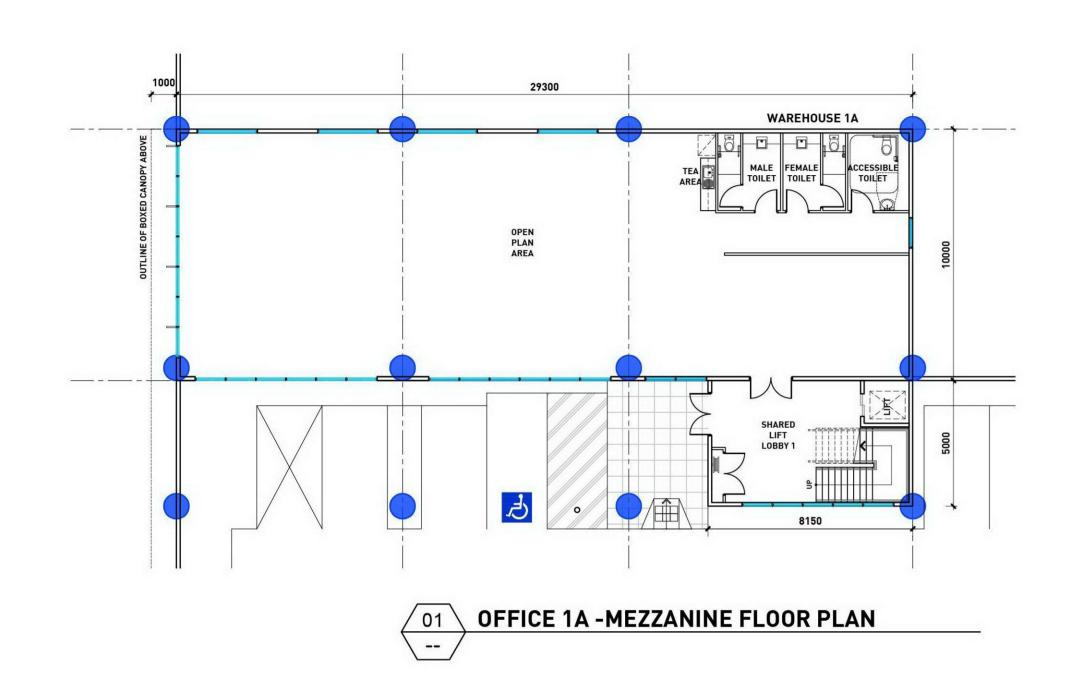
The Regularly used areas are defined as;

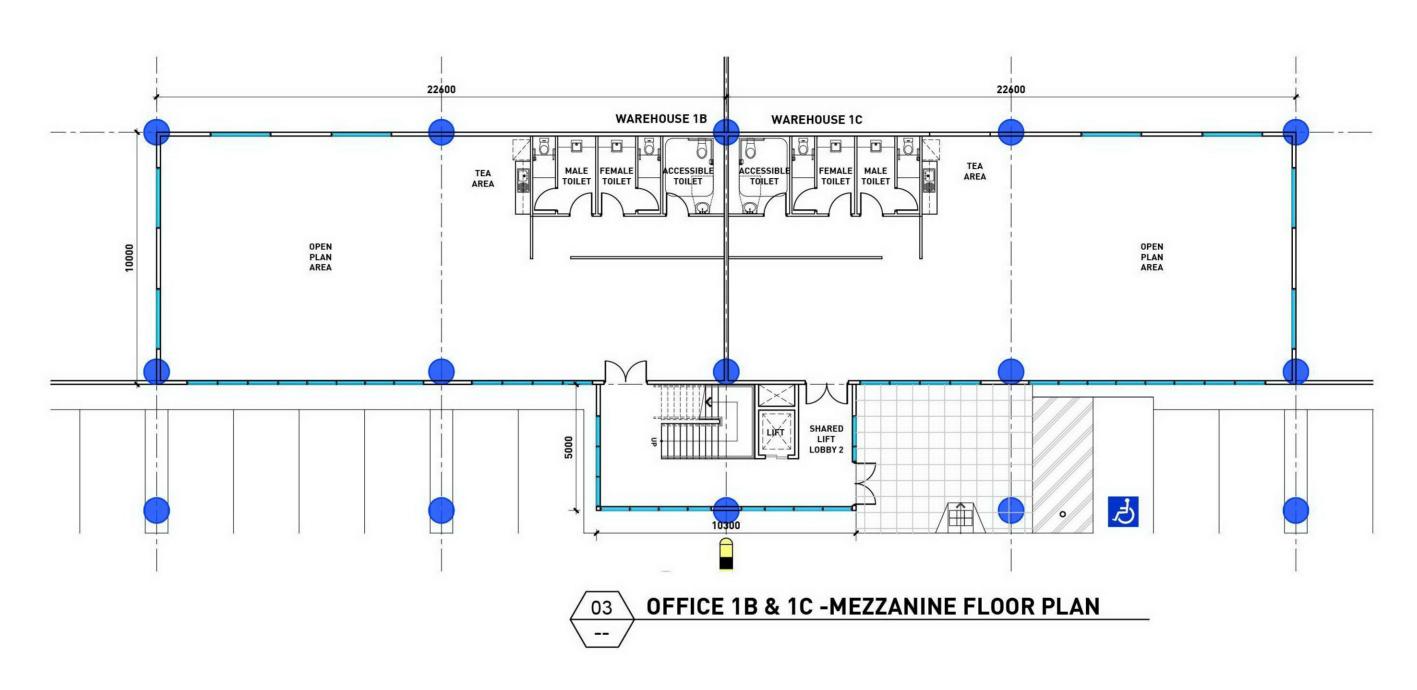
- > All spaces a person is expected to work or remain for an extended period
- Spaces that have been excluded from the assessment:
- In this project 20% of the total floor area is considered to be either transient spaces or accessed intermittently.

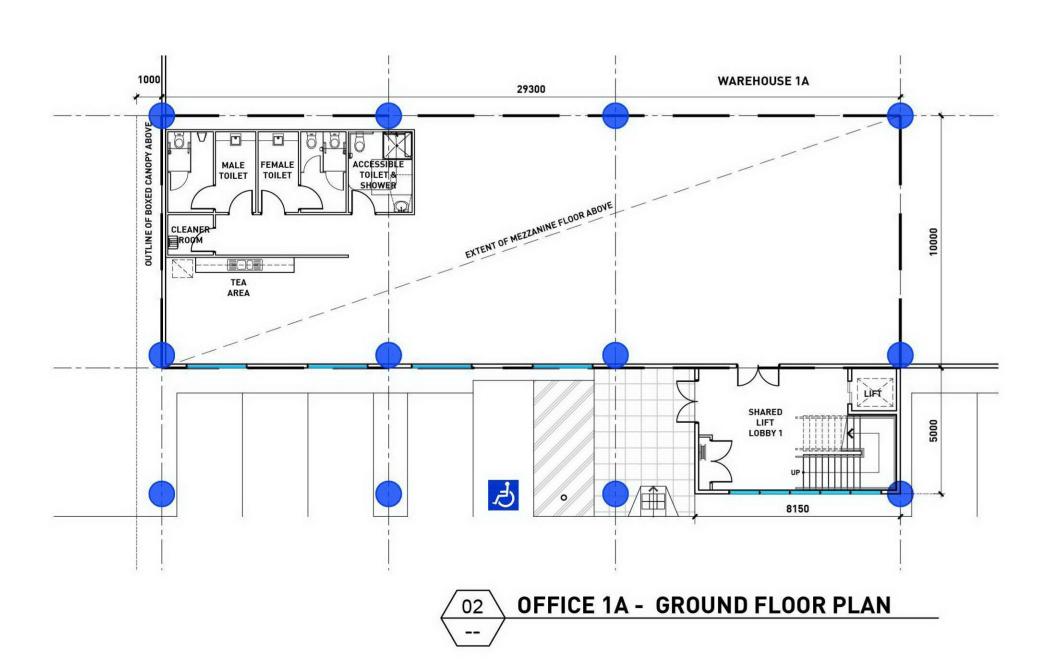
The table below shows the results of the daylight study for the regularly used areas in the offices, indicating 37.0% of the regularly used area achieves a daylight factor greater than 2.0.

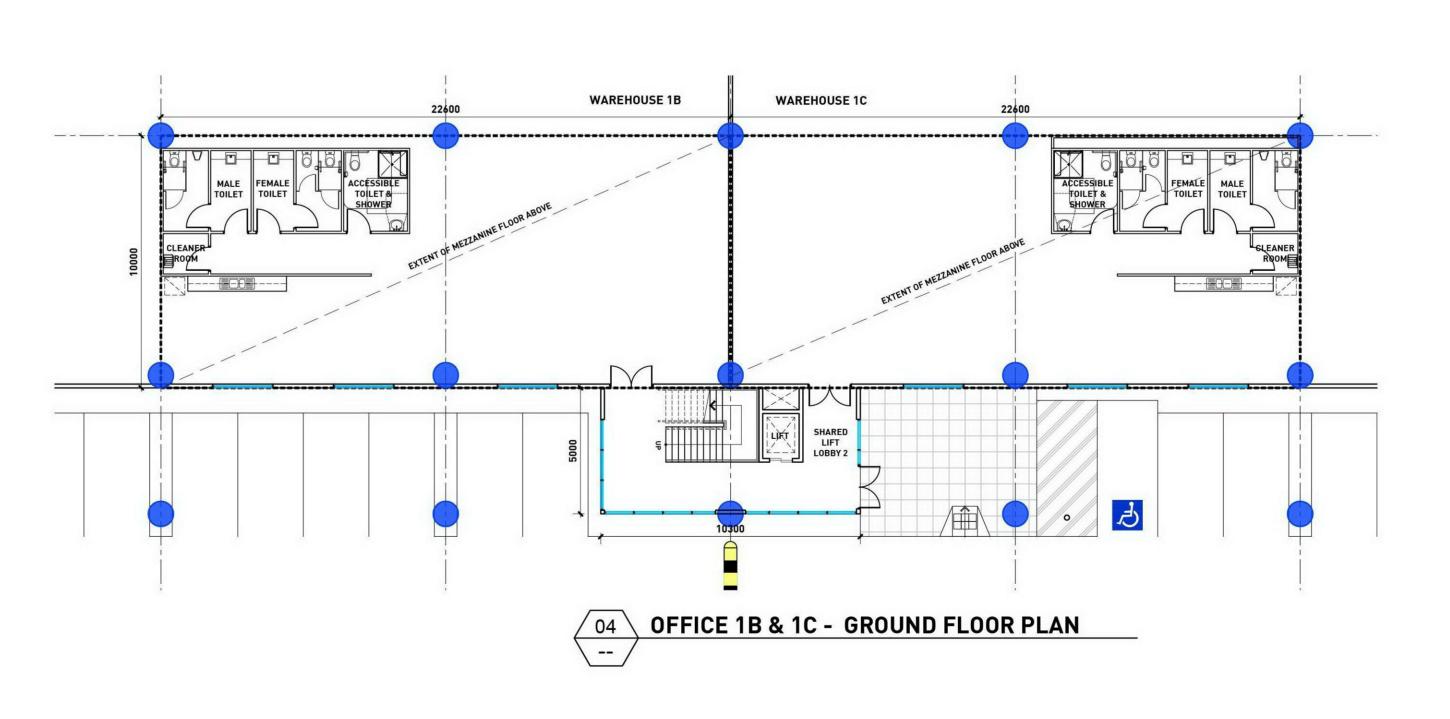
Tenant	Total Floor Area (m²)	Regularly Used Area (m²)	Floor Area > Daylight Factor 2.0% (m²)	Compliant Floor Area %
Building 1				E.
Dock Office A	38.5	30.8	11.9	30.9%
Dock Office B	38.5	30.8	11.9	30.9%
Dock Office C	38.5	30.8	11.9	30.9%
Dock Office D	38.5	30.8	17.5	45.5%
Dock Office E	38.5	30.8	11.9	30.9%
Dock Office F	38.5	30.8	15.5	40.3%
Dock Office G	38.5	30.8	17.5	45.5%
Dock Office H	38.5	30.8	11.9	30.9%
Dock Office I	38.5	30.8	15.5	40.3%
Office A	243.7	194.96	82.8	34.0%
Office B	180.6	144.48	51.1	28.3%
Office C	180.6	144.48	51.1	28.3%
Office D	439.7	351.76	146.2	33.2%
Office E	340.6	272.48	81.4	23.9%
Office F	340.6	272.48	81.4	23.9%
Office G	439.7	351.76	119.6	27.2%
Office H	340.6	272.48	65.2	19.1%
Office I	340.6	272.48	65.2	19.1%

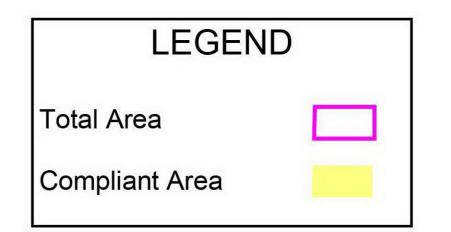
Tenant	Total Floor Area (m²)	Regularly Used Area (m²)	Floor Area > Daylight Factor 2.0% (m²)	Compliant Floor Area %
Building 2			<u> </u>	
Dock Office A	38.5	30.8	15.5	40.3%
Dock Office B	38.5	30.8	15.5	40.3%
Dock Office C	38.5	30.8	15.5	40.3%
Dock Office D	38.5	30.8	17.5	45.5%
Dock Office E	38.5	30.8	17.8	46.2%
Dock Office F	38.5	30.8	17.8	46.2%
Dock Office G	38.5	30.8	17.5	45.5%
Dock Office H	38.5	30.8	17.8	46.2%
Dock Office I	38.5	30.8	17.8	46.2%
Office A	237.4	189.92	43.5	18.3%
Office B	214	171.2	50.8	23.7%
Office C	214	171.2	50.8	23.7%
Office D	443.4	354.72	146.1	32.9%
Office E	340.7	272.56	81.4	23.9%
Office F	340.7	272.56	81.4	23.9%
Office G	443.4	354.72	207.6	46.8%
Office H	340.8	272.64	121.8	35.7%
Office I	340.8	272.64	121.8	35.7%
Total		5163.92	1927.4	37%

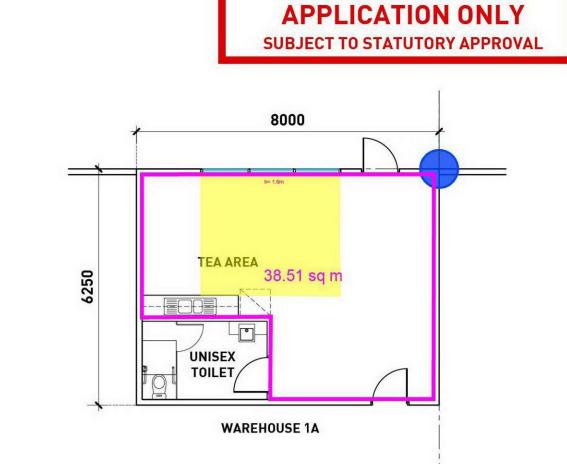

BESS Requirement	Project's Results	PASS?
To claim BESS Credit 1.4 Daylight Access – Non-Residential one must use a daylight modelling software or daylight calculations to show that minimum of 33% of regular use (by floor area) achieves the target daylight factor of 2%, assuming a uniform design sky of 10,000 lux.	37% of regularly used area (by floor area) achieves the target daylight factor of 2%.	Yes

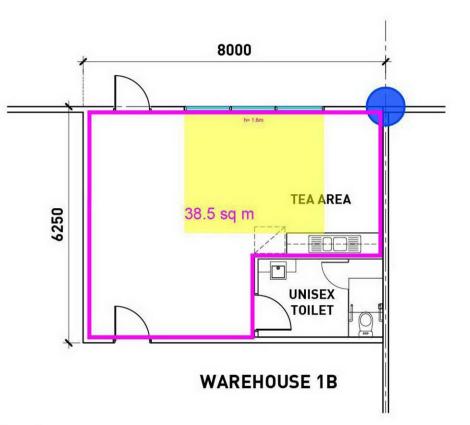

Project: MEL3438 Axxess Corporate Park
Report: Sustainability Management Plan
Date: 13 December 2022 Rev: 01

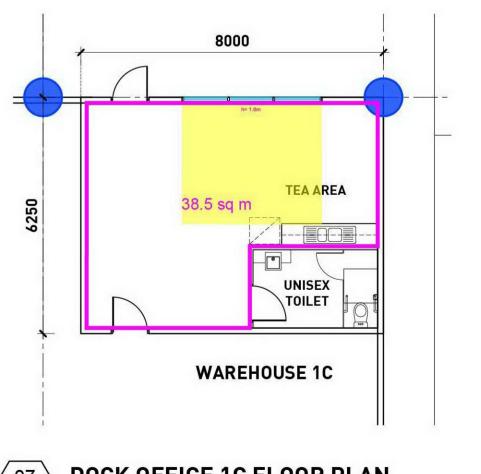

© CONCEPT Y PTY LTD


These drawings are subject to copyright and may not be copied, used or altered in any way without the expressed permission of Concept Y Pty Ltd. All areas and dimensions on drawings are approximate only and are subject to confirmation


- This concept plan is intended for Development Application purposes only. All setbacks, site coverage, car parking numbers, landscape areas and the like are subject to statutory approval.
- No assurance is given as to the features, attributes, feasibility or accuracy of anything shown on or disclosed in this plan.
- All existing & proposed features, dimensions, areas and boundaries are approximate only and subject to verification via detailed site survey by licensed surveyor.

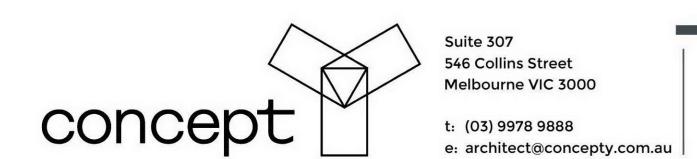






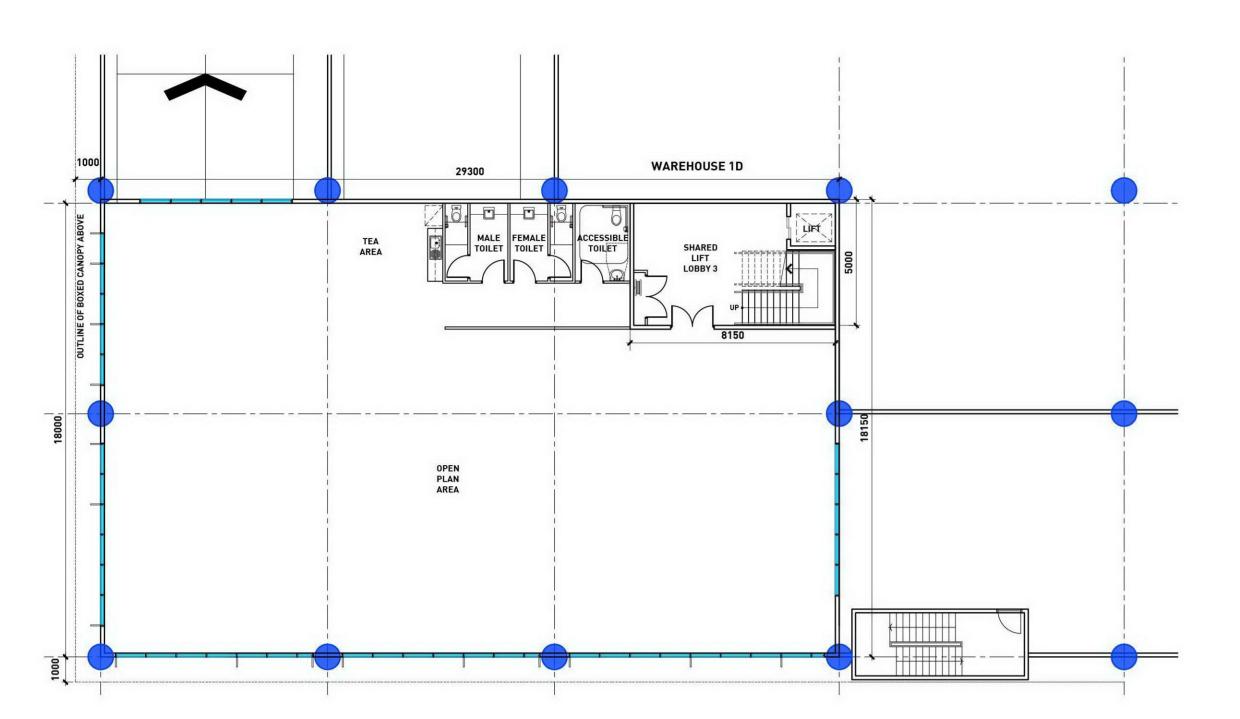
FOR DEVELOPMENT

DOCK OFFICE 1A FLOOR PLAN SCALE: 1:100




DOCK OFFICE 1B FLOOR PLAN SCALE: 1:100

DOCK OFFICE 1C FLOOR PLAN SCALE: 1:100 CLIENT:


dexus

© CONCEPT Y PTY LTD These drawings are subject to copyright and may not be copied, used or altered in any way without the expressed permission of Concept Y Pty Ltd. All areas and dimensions on drawings are approximate only and are subject to confirmation

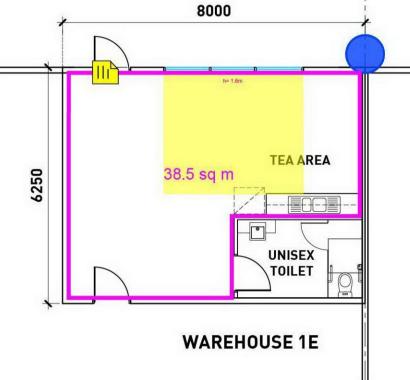
- This concept plan is intended for Development Application purposes only. All setbacks, site coverage, car parking numbers, landscape areas and the like are subject to
- No assurance is given as to the features, attributes, feasibility or accuracy of anything shown on or disclosed in this plan.
- All existing & proposed features, dimensions, areas and boundaries are approximate only and subject to verification via detailed site survey by licensed surveyor.

WAREHOUSE 1E WAREHOUSE 1F

38.51 sq m UNISEX TOILET **WAREHOUSE 1D DOCK OFFICE 1D FLOOR PLAN SCALE: 1:100** 8000

OFFICE 1D - FIRST FLOOR MEZZANINE PLAN

WAREHOUSE 1D


OFFICE 1E & 1F - FIRST FLOOR MEZZANINE PLAN

WAREHOUSE 1F

LEGEND

Total Area

Compliant Area

DOCK OFFICE 1E FLOOR PLAN

SCALE: 1:100

FOR DEVELOPMENT

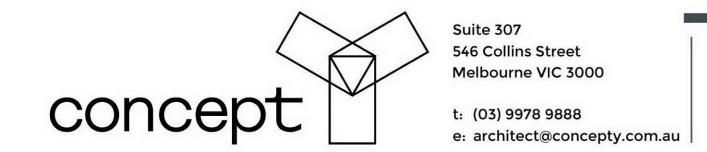
APPLICATION ONLY

SUBJECT TO STATUTORY APPROVAL

8000

WAREHOUSE 1E

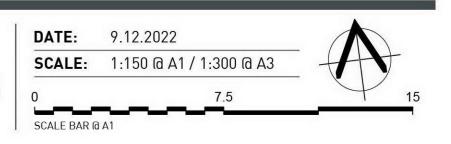
8000


WAREHOUSE 1F

OFFICE 1D - FIRST FLOOR PLAN

OFFICE 1E & 1F - FIRST FLOOR PLAN

DOCK OFFICE 1F FLOOR PLAN SCALE: 1:100 CLIENT:



PROPOSED DEVELOPMENT

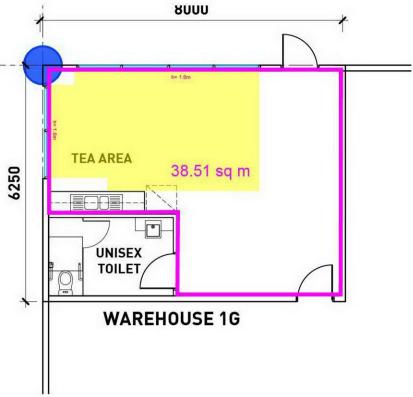
OFFICE PLANS OFFICE 1D, 1E, & 1F

DRAWING TYPE: DEVELOPMENT APPLICATION DRAWING NUMBER: REVISION: 2209-122-DA-111

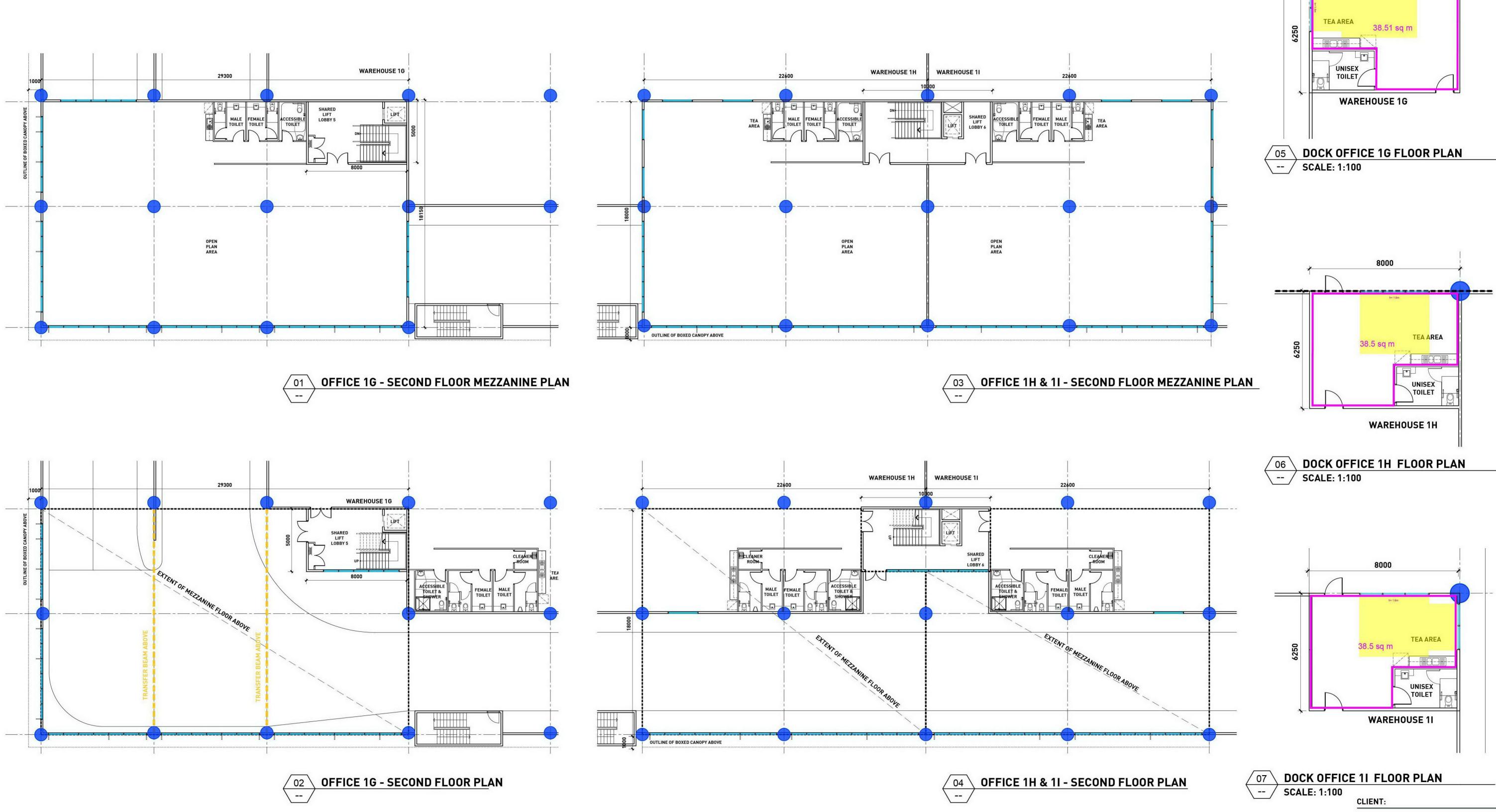
© CONCEPT Y PTY LTD These drawings are subject to copyright and may not be copied, used or altered in any way without the expressed permission of Concept Y Pty Ltd.

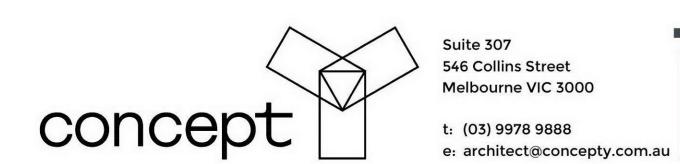
All areas and dimensions on drawings are

approximate only and are subject to confirmation


 This concept plan is intended for Development Application purposes only. All setbacks, site coverage, car parking numbers, landscape areas and the like are subject to statutory approval.

No assurance is given as to the features, attributes, feasibility or accuracy of anything shown on or disclosed in this plan.


All existing & proposed features, dimensions, areas and boundaries are approximate only and subject to verification via detailed site survey by licensed surveyor.


LEGEND Total Area Compliant Area

FOR DEVELOPMENT APPLICATION ONLY SUBJECT TO STATUTORY APPROVAL

CLIENT: dexus

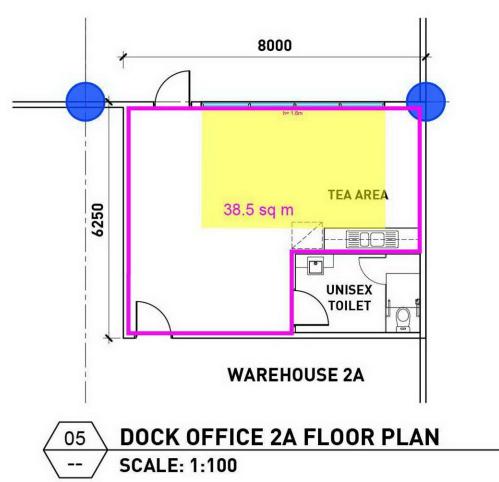
PROPOSED DEVELOPMENT

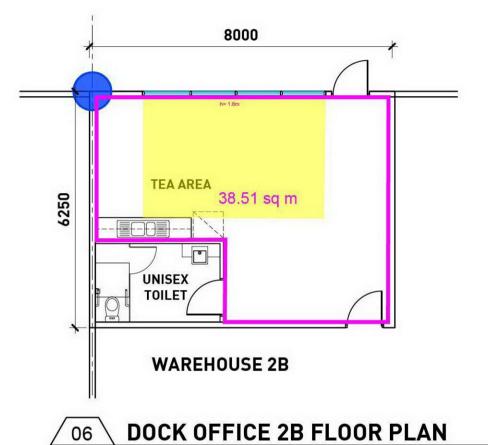
© CONCEPT Y PTY LTD These drawings are subject to copyright and may not be copied, used or altered in any way without the expressed permission of Concept Y Pty Ltd.

approximate only and are subject to confirmation

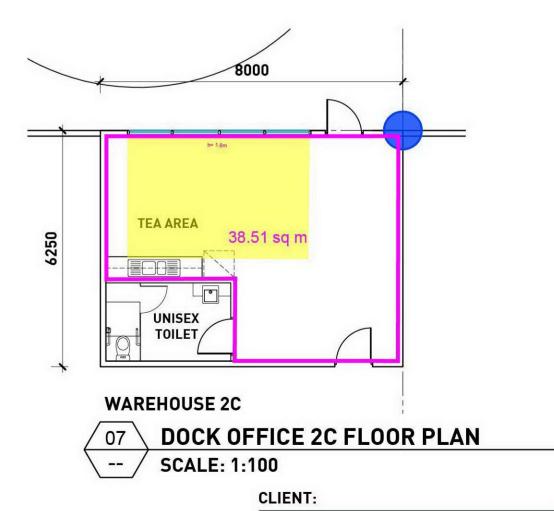
All areas and dimensions on drawings are

 This concept plan is intended for Development Application purposes only. All setbacks, site coverage, car parking numbers, landscape areas and the like are subject to

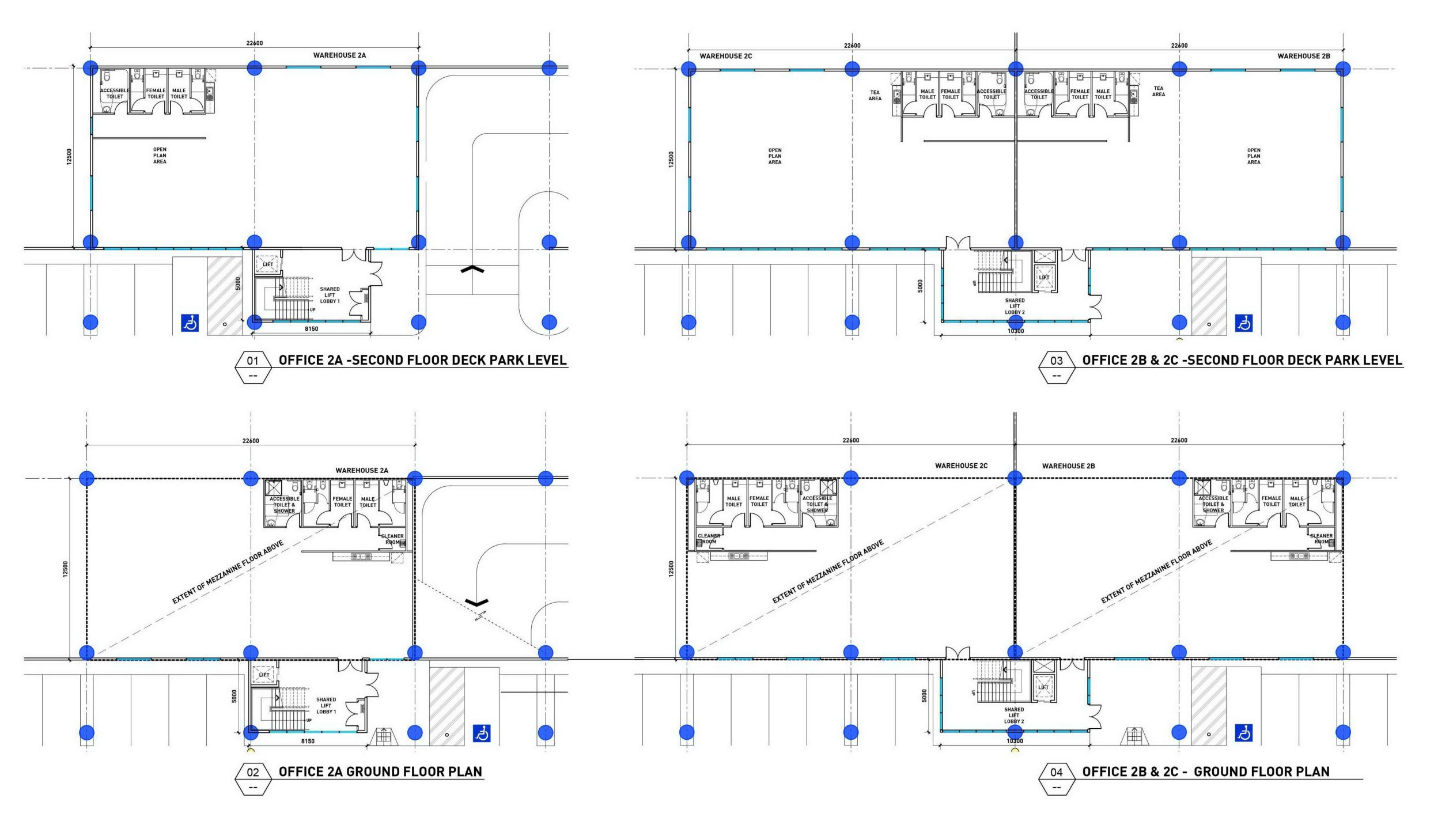

No assurance is given as to the features, attributes, feasibility or accuracy of anything shown on or disclosed in this plan.


statutory approval.

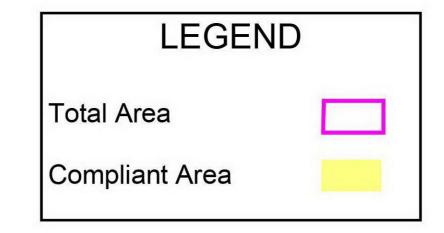
 All existing & proposed features, dimensions, areas and boundaries are approximate only and subject to verification via detailed site survey by licensed surveyor.


LEGEND Total Area Compliant Area

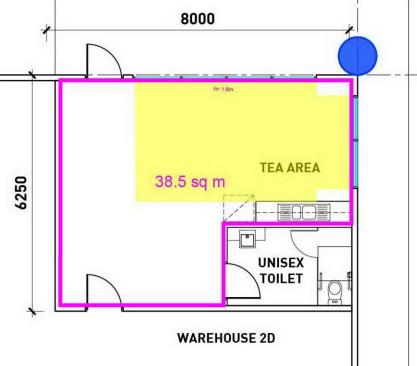
FOR DEVELOPMENT APPLICATION ONLY SUBJECT TO STATUTORY APPROVAL



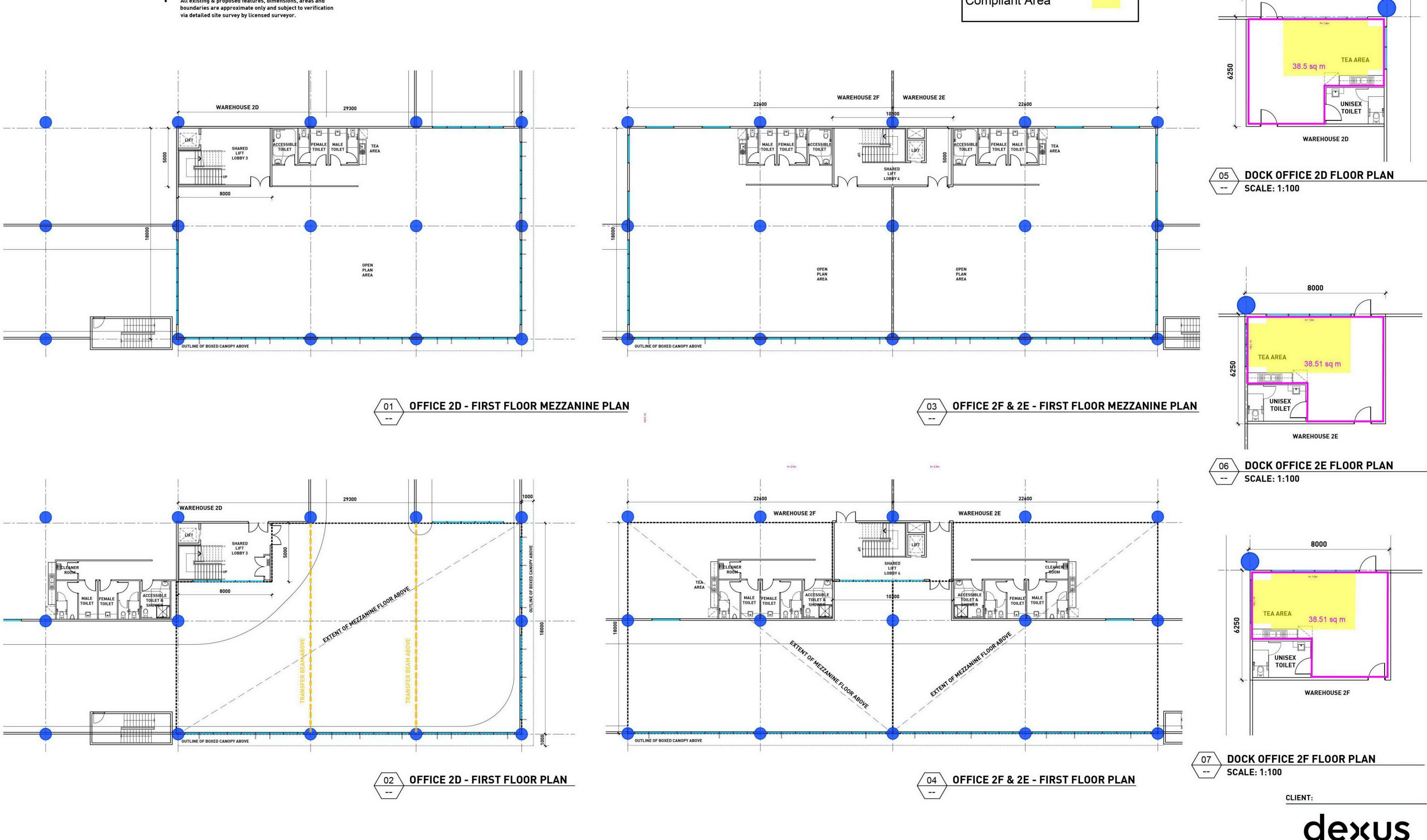
SCALE: 1:100



dexus



© CONCEPT Y PTY LTD These drawings are subject to copyright and may not be copied, used or altered in any way without the expressed permission of Concept Y Pty Ltd. All areas and dimensions on drawings are approximate only and are subject to confirmation


- This concept plan is intended for Development Application purposes only. All setbacks, site coverage, car parking numbers, landscape areas and the like are subject to statutory approval.
- No assurance is given as to the features, attributes, feasibility or accuracy of anything shown on or disclosed in this plan.
- All existing & proposed features, dimensions, areas and boundaries are approximate only and subject to verification

FOR DEVELOPMENT APPLICATION ONLY SUBJECT TO STATUTORY APPROVAL

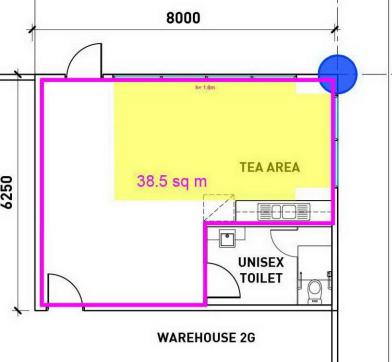
dexus

© CONCEPT Y PTY LTD These drawings are subject to copyright and may not be copied, used or altered in any way without the expressed permission of Concept Y Pty Ltd. All areas and dimensions on drawings are approximate only and are subject to confirmation

 This concept plan is intended for Development Application purposes only. All setbacks, site coverage, car parking numbers, landscape areas and the like are subject to statutory approval.

 No assurance is given as to the features, attributes, feasibility or accuracy of anything shown on or disclosed in this plan.

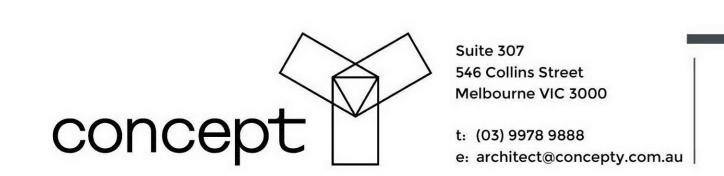
 All existing & proposed features, dimensions, areas and boundaries are approximate only and subject to verification via detailed site survey by licensed surveyor.


WAREHOUSE 2G

LEGEND Total Area Compliant Area

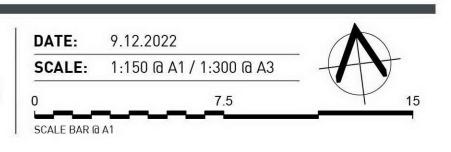
WAREHOUSE 21

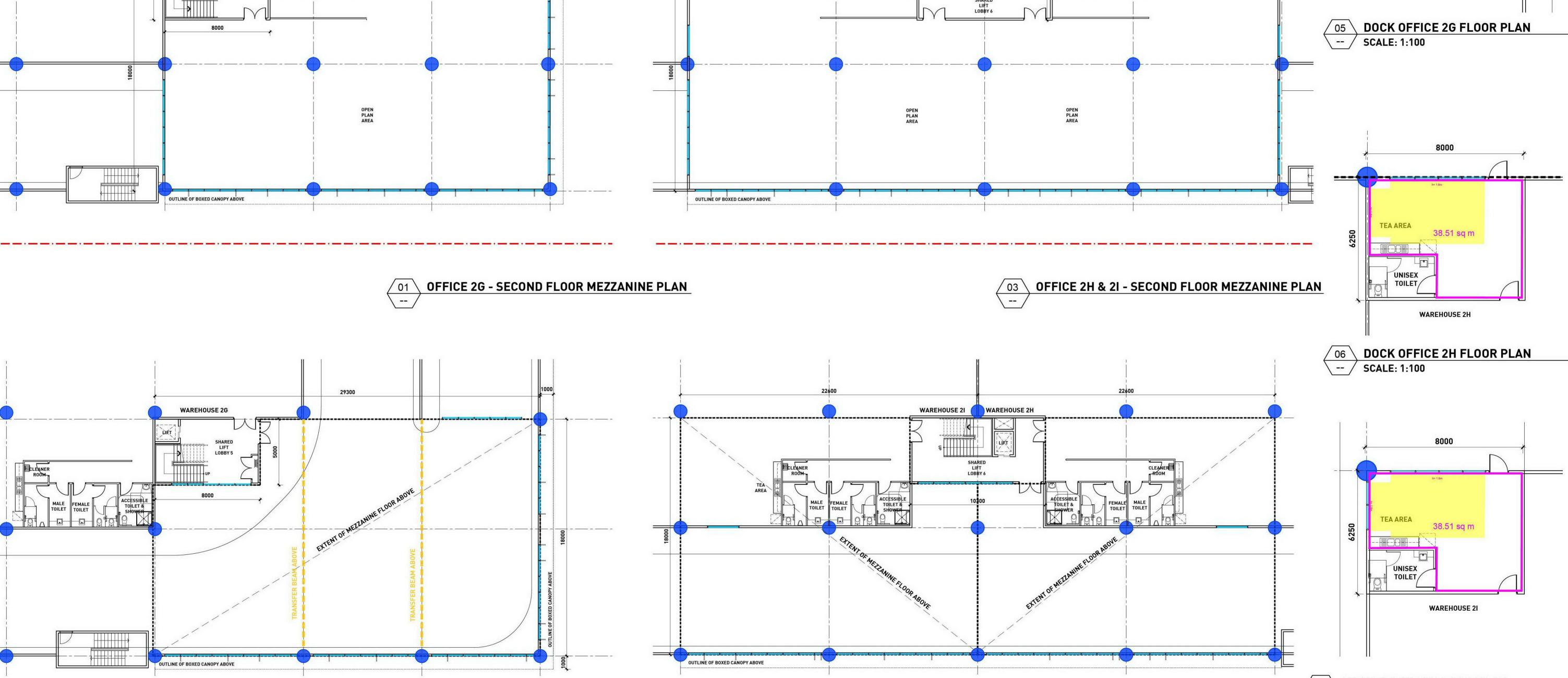
WAREHOUSE 2H


FOR DEVELOPMENT APPLICATION ONLY SUBJECT TO STATUTORY APPROVAL

DOCK OFFICE 2I FLOOR PLAN SCALE: 1:100

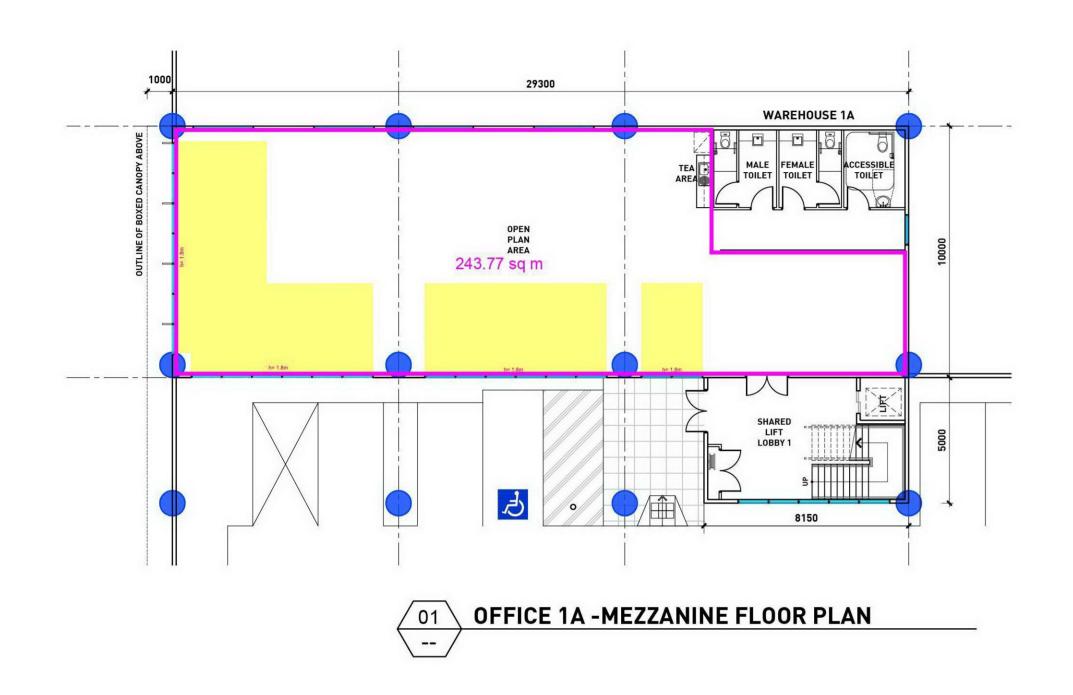
CLIENT:

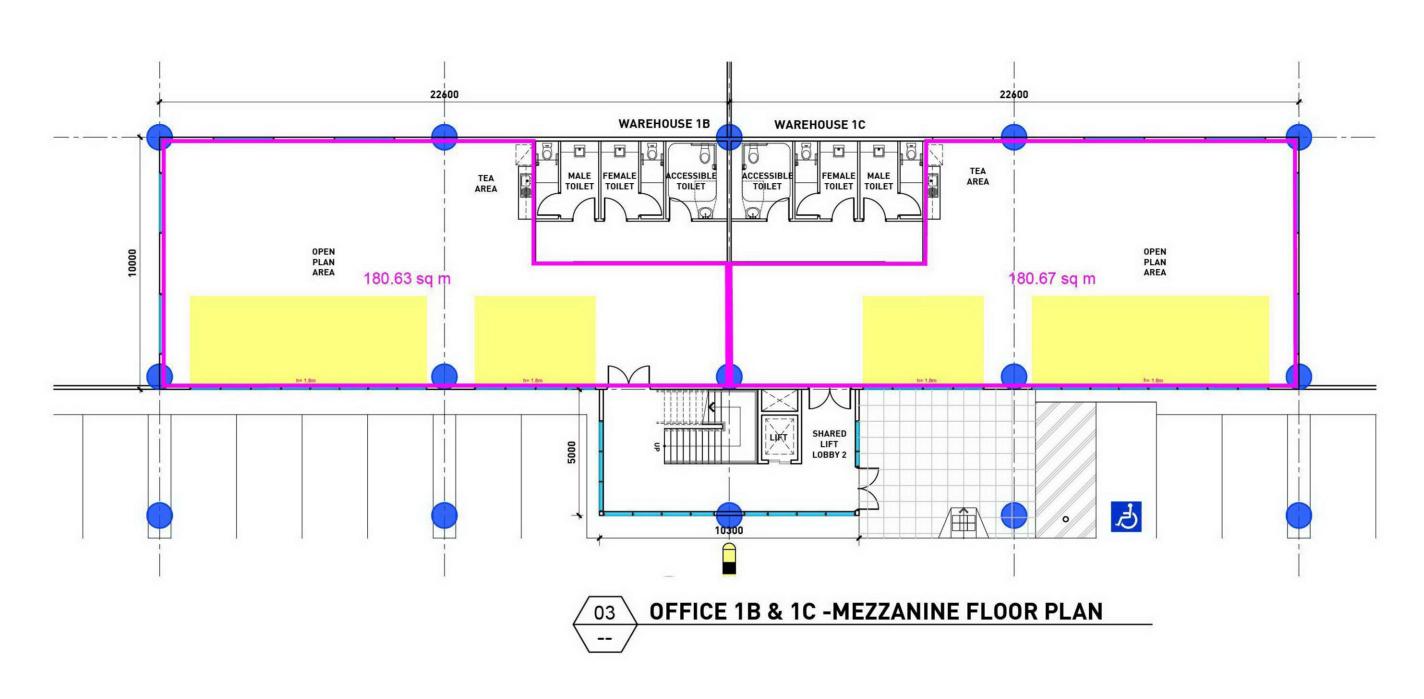

dexus

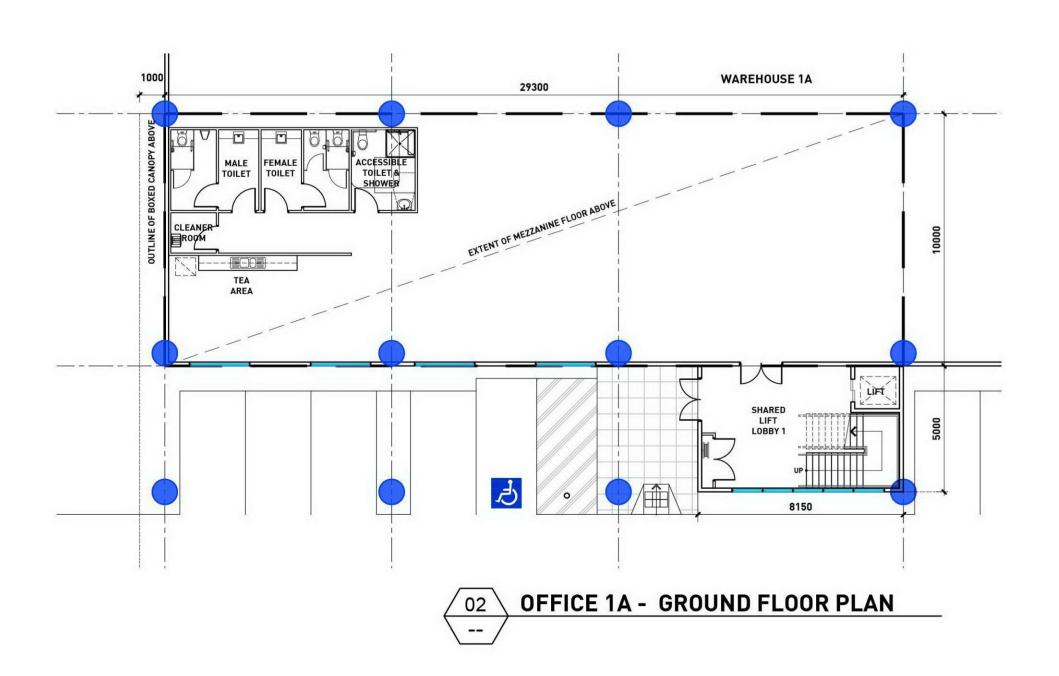


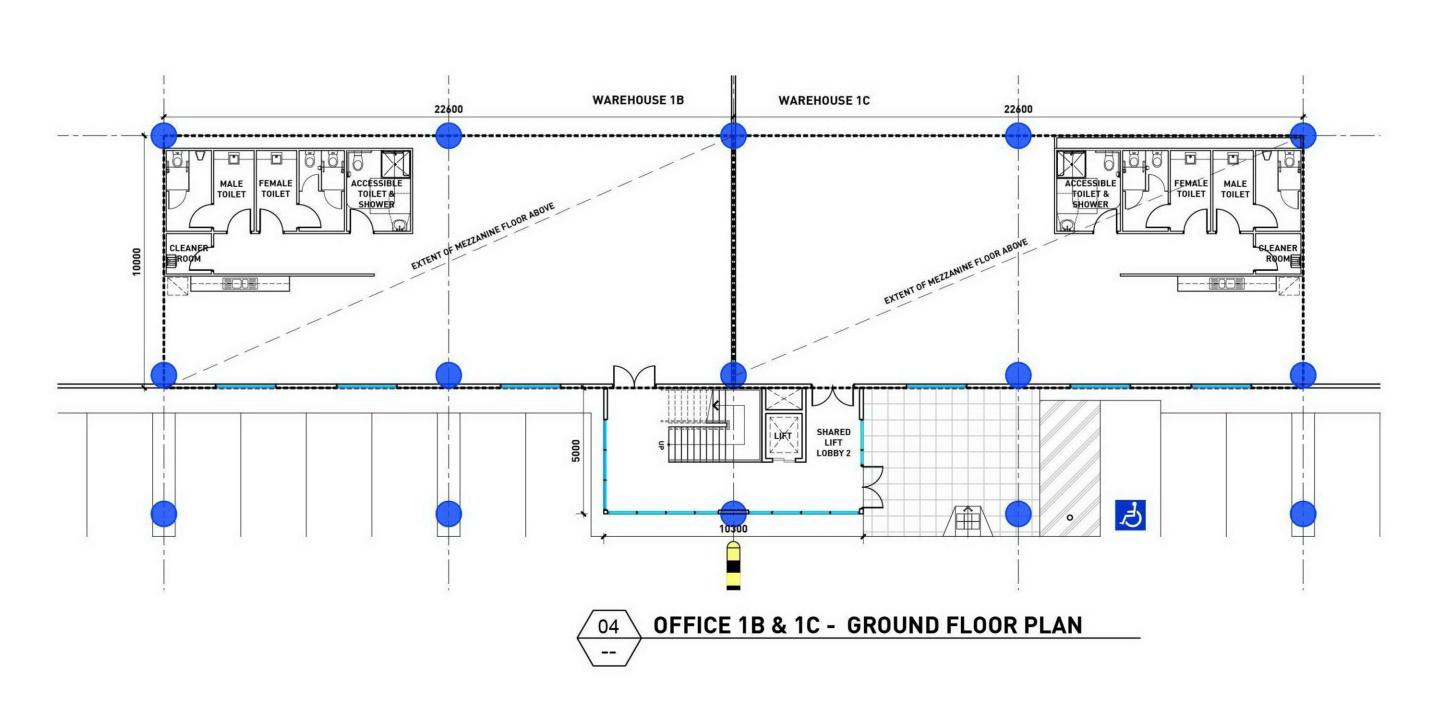
OFFICE 2G - SECOND FLOOR PLAN

OFFICE 2H & 2I - SECOND FLOOR PLAN

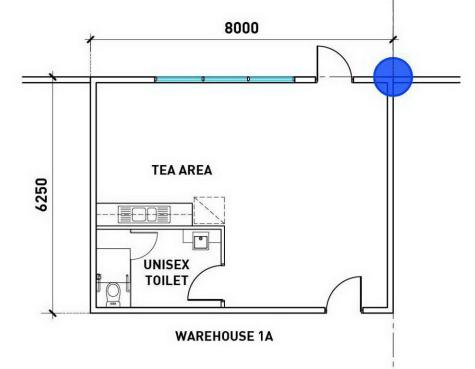


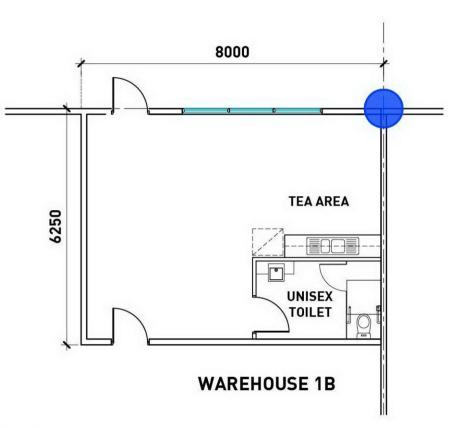


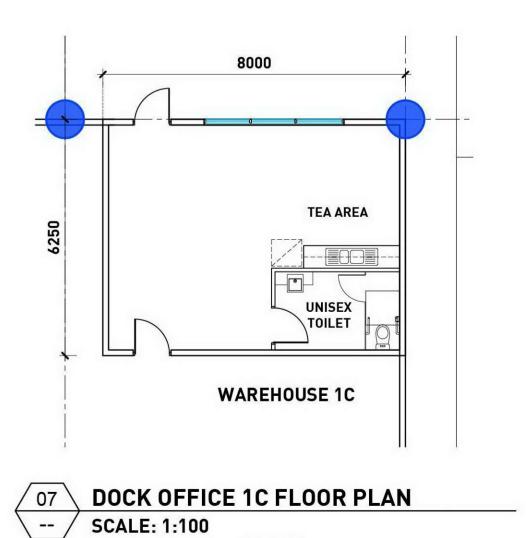

© CONCEPT Y PTY LTD


These drawings are subject to copyright and may not be copied, used or altered in any way without the expressed permission of Concept Y Pty Ltd. All areas and dimensions on drawings are approximate only and are subject to confirmation

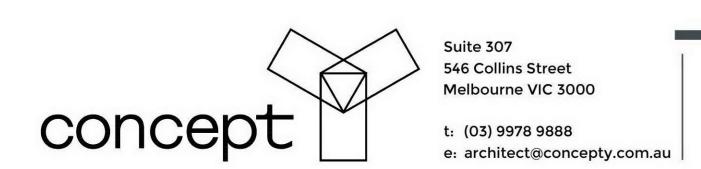
- This concept plan is intended for Development Application purposes only. All setbacks, site coverage, car parking numbers, landscape areas and the like are subject to statutory approval.
- No assurance is given as to the features, attributes, feasibility or accuracy of anything shown on or disclosed in this plan.
- All existing & proposed features, dimensions, areas and boundaries are approximate only and subject to verification via detailed site survey by licensed surveyor.







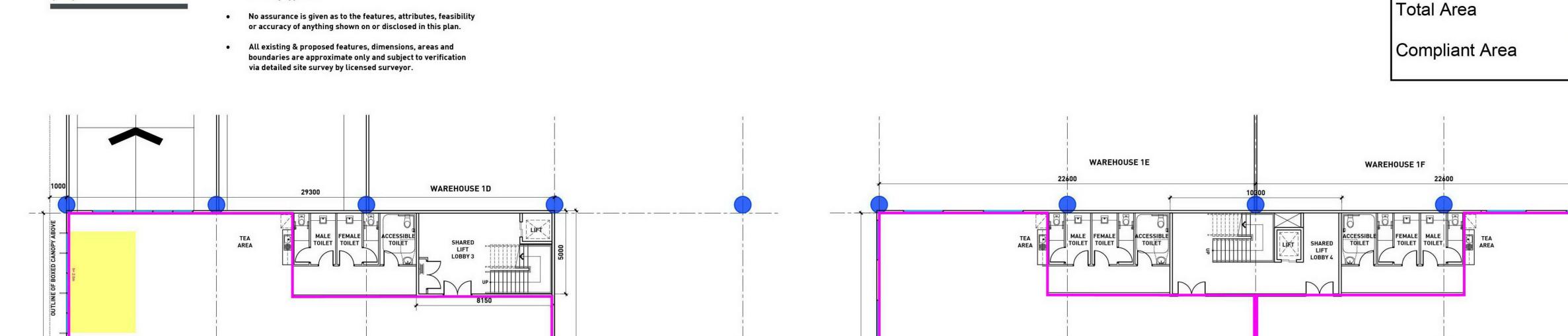
DOCK OFFICE 1A FLOOR PLAN SCALE: 1:100



DOCK OFFICE 1B FLOOR PLAN SCALE: 1:100

CLIENT:

dexus

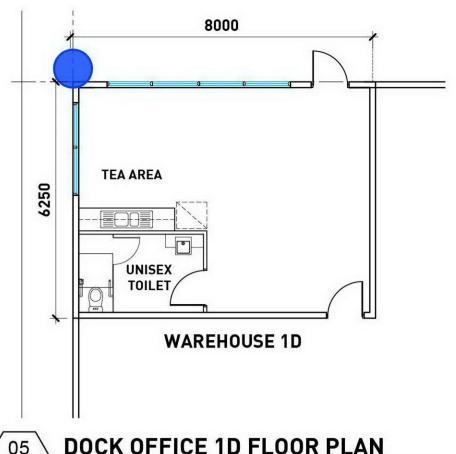

PROPOSED DEVELOPMENT

© CONCEPT Y PTY LTD These drawings are subject to copyright and may not be copied, used or altered in any way without the expressed permission of Concept Y Pty Ltd. All areas and dimensions on drawings are approximate only and are subject to confirmation

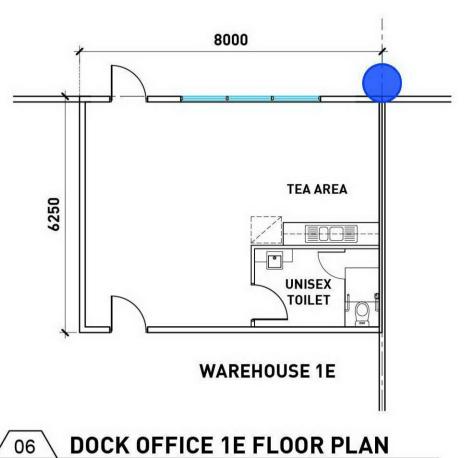
 This concept plan is intended for Development Application purposes only. All setbacks, site coverage, car parking numbers, landscape areas and the like are subject to

439.73 sq m PLAN AREA

No assurance is given as to the features, attributes, feasibility



OFFICE 1D - FIRST FLOOR MEZZANINE PLAN


WAREHOUSE 1D

OFFICE 1D - FIRST FLOOR PLAN

FOR DEVELOPMENT LEGEND APPLICATION ONLY SUBJECT TO STATUTORY APPROVAL

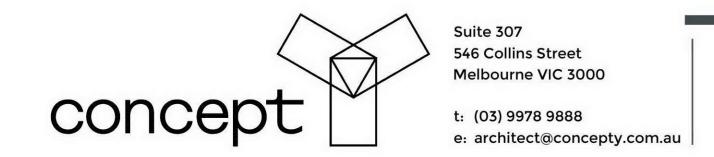
DOCK OFFICE 1D FLOOR PLAN SCALE: 1:100

SCALE: 1:100

OFFICE 1E & 1F - FIRST FLOOR MEZZANINE PLAN

340.66 sq m

WAREHOUSE 1E WAREHOUSE 1F OFFICE 1E & 1F - FIRST FLOOR PLAN


340.62 sq m

OUTLINE OF BOXED CANOPY ABOVE

8000 **TEA AREA WAREHOUSE 1F**

DOCK OFFICE 1F FLOOR PLAN SCALE: 1:100 CLIENT:

dexus

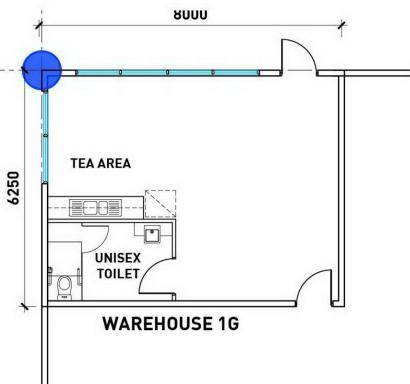
PROPOSED DEVELOPMENT

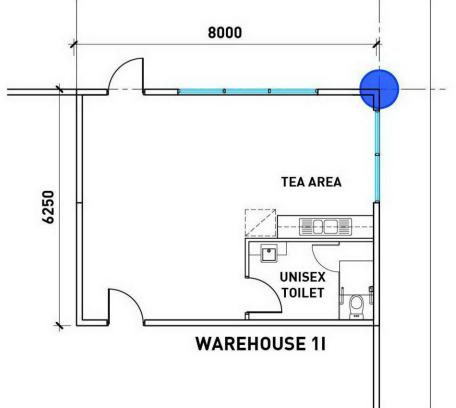
Axxess Corporate Park, 1-31 Gilby Road, Mount Waverley VIC

© CONCEPT Y PTY LTD These drawings are subject to copyright and may not be copied, used or altered in any way without the expressed permission of Concept Y Pty Ltd.

approximate only and are subject to confirmation

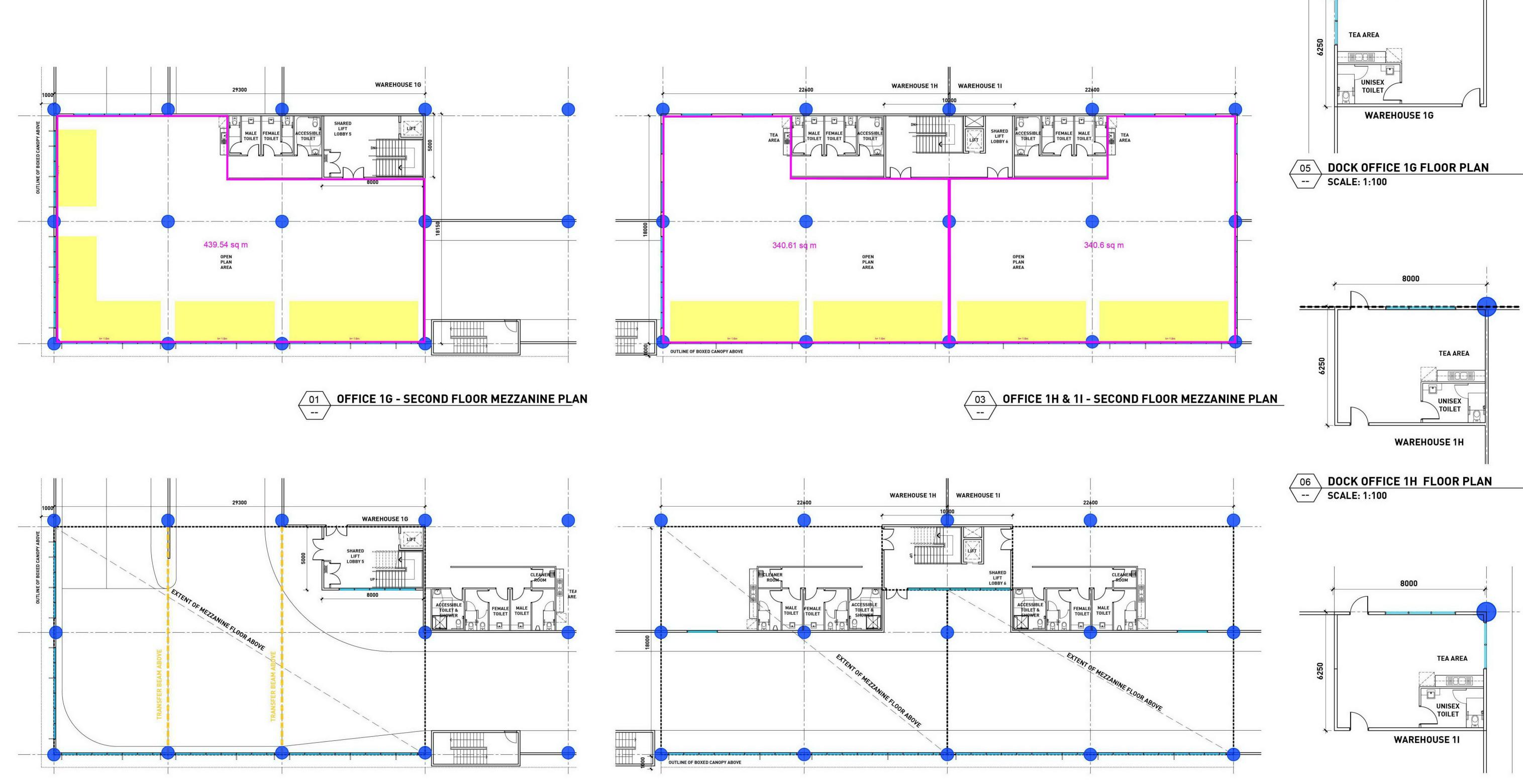
All areas and dimensions on drawings are


 This concept plan is intended for Development Application purposes only. All setbacks, site coverage, car parking numbers, landscape areas and the like are subject to statutory approval.


No assurance is given as to the features, attributes, feasibility or accuracy of anything shown on or disclosed in this plan.

All existing & proposed features, dimensions, areas and boundaries are approximate only and subject to verification via detailed site survey by licensed surveyor.

LEGEND Total Area Compliant Area


FOR DEVELOPMENT APPLICATION ONLY SUBJECT TO STATUTORY APPROVAL

DOCK OFFICE 11 FLOOR PLAN SCALE: 1:100 CLIENT:

dexus

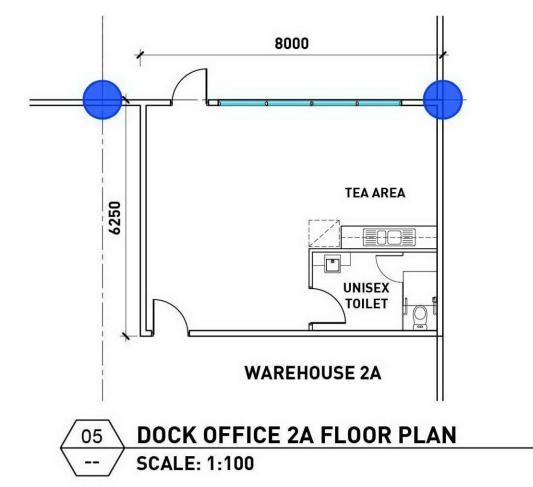
OFFICE 1G - SECOND FLOOR PLAN

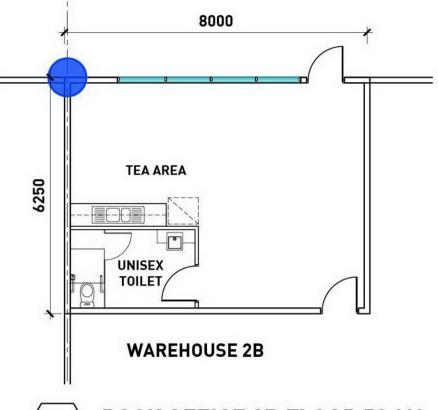
OFFICE 1H & 1I - SECOND FLOOR PLAN

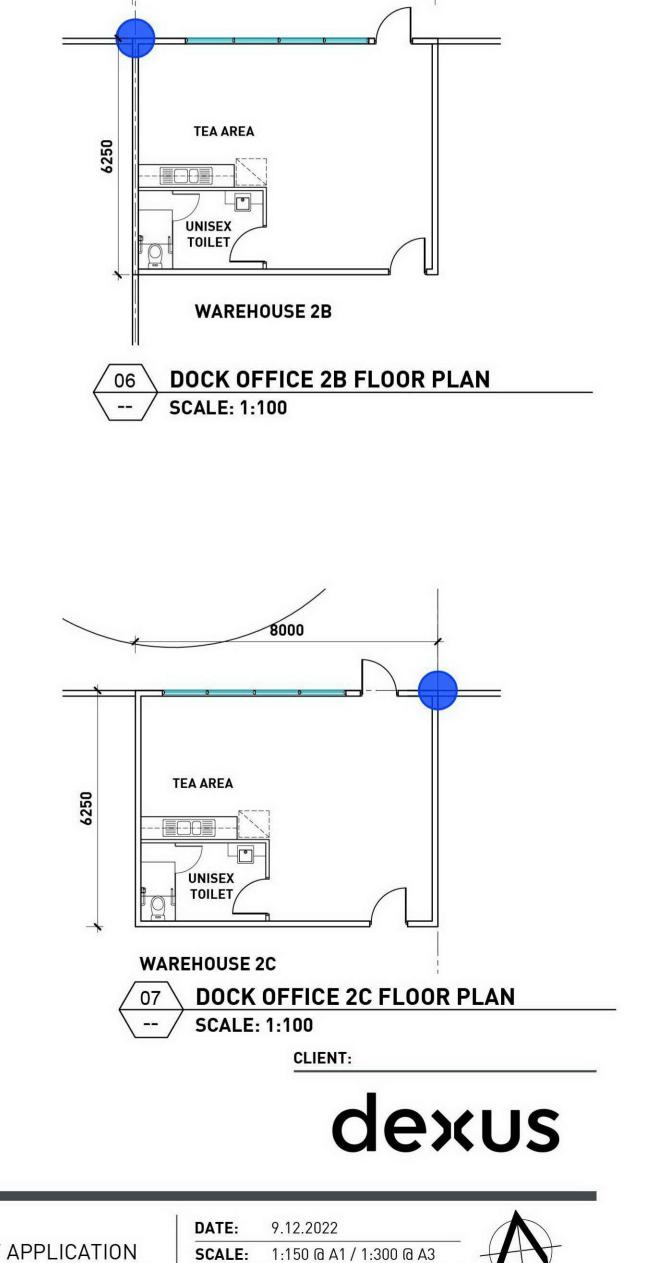
© CONCEPT Y PTY LTD These drawings are subject to copyright and may not be copied, used or altered in any way without the expressed permission of Concept Y Pty Ltd.

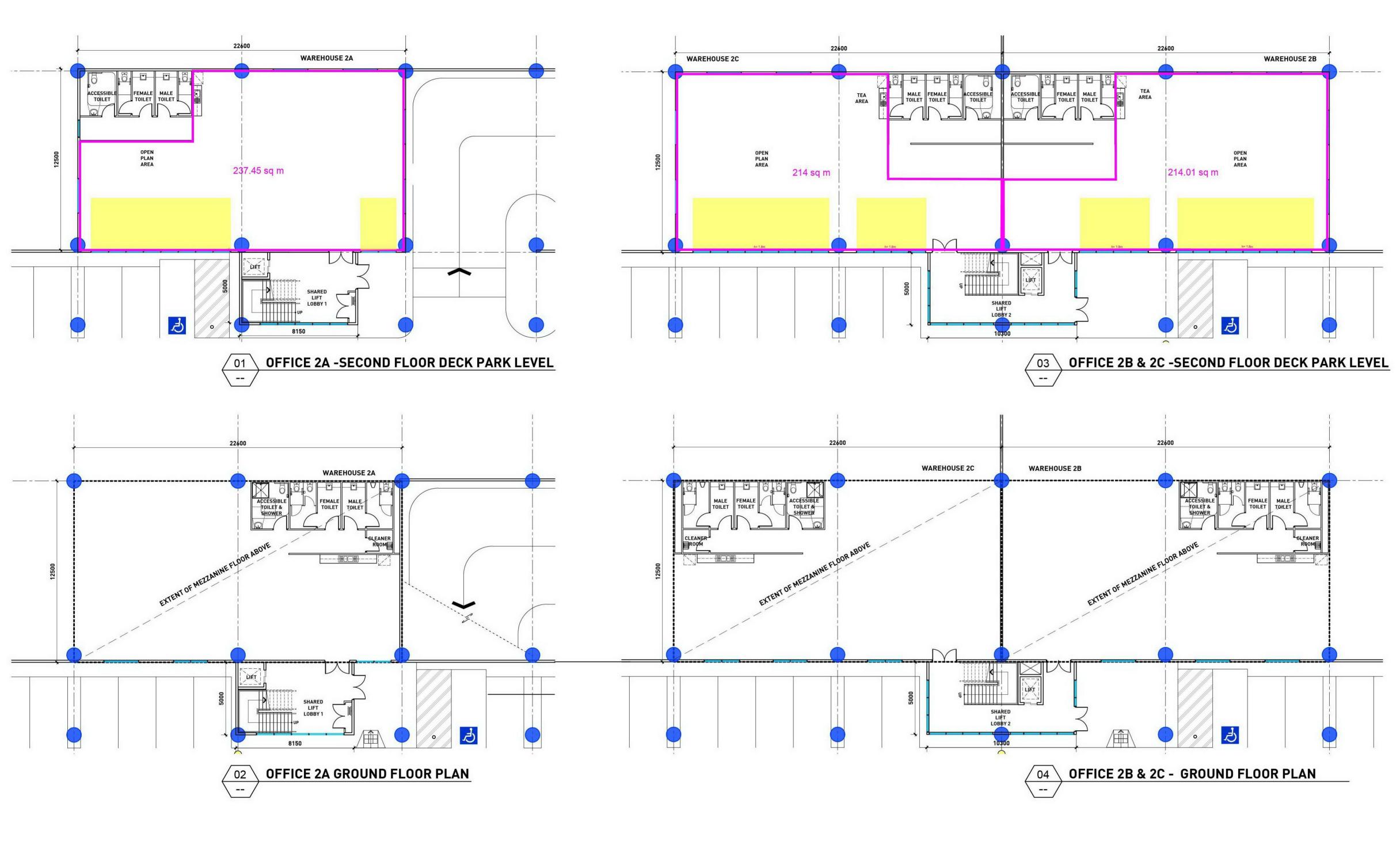
approximate only and are subject to confirmation

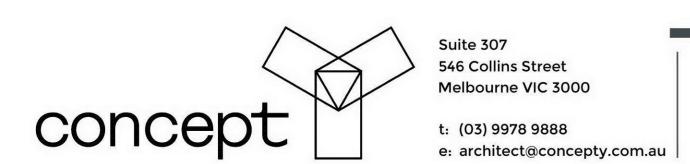
All areas and dimensions on drawings are


 This concept plan is intended for Development Application purposes only. All setbacks, site coverage, car parking numbers, landscape areas and the like are subject to statutory approval.


No assurance is given as to the features, attributes, feasibility or accuracy of anything shown on or disclosed in this plan.

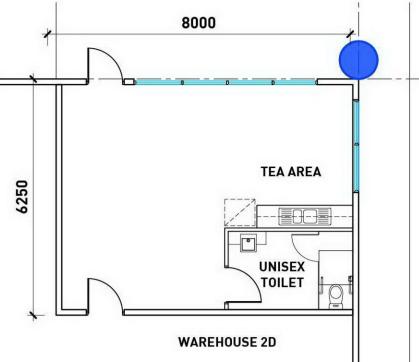

 All existing & proposed features, dimensions, areas and boundaries are approximate only and subject to verification via detailed site survey by licensed surveyor.

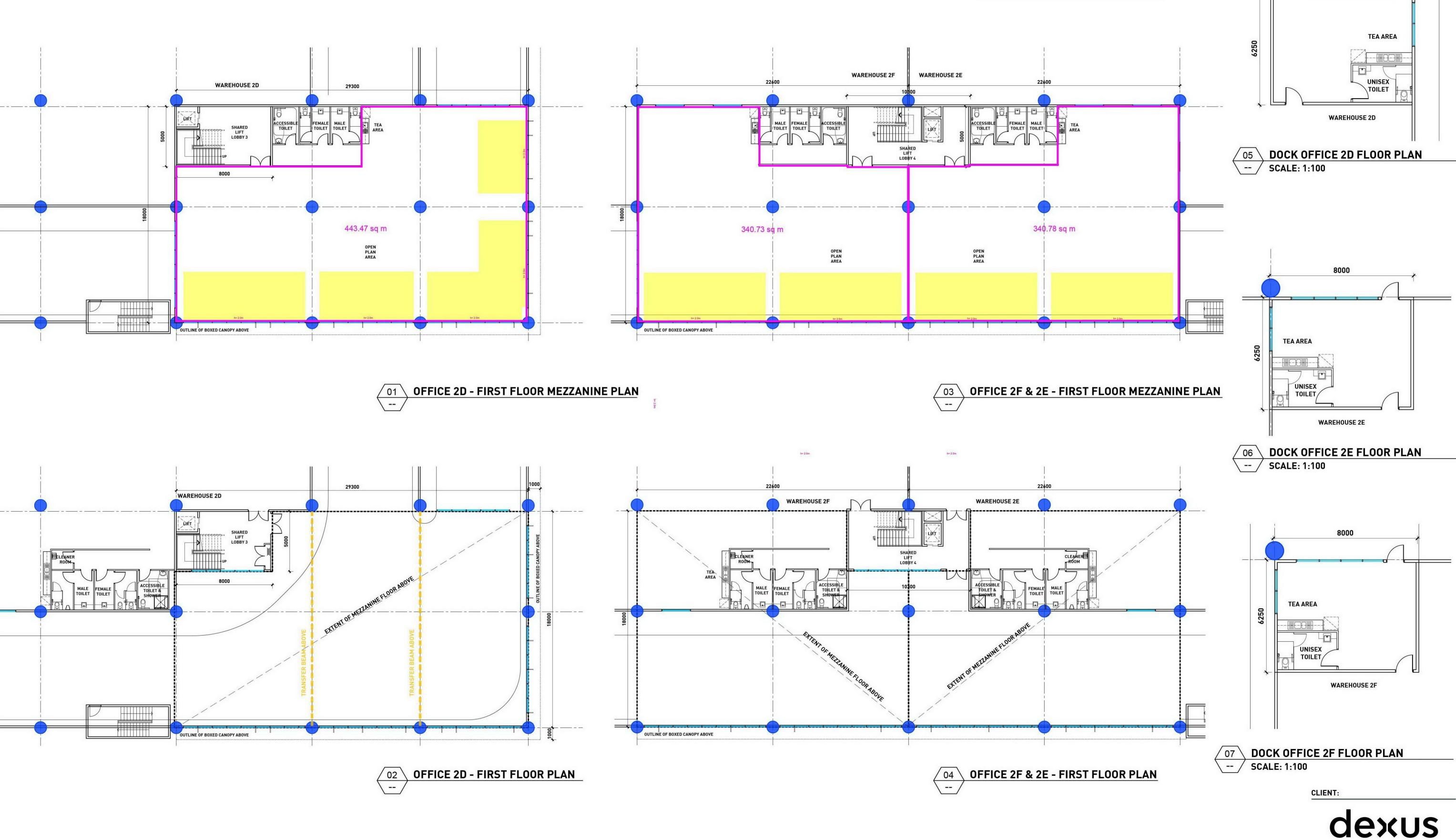

LEGEND Total Area Compliant Area

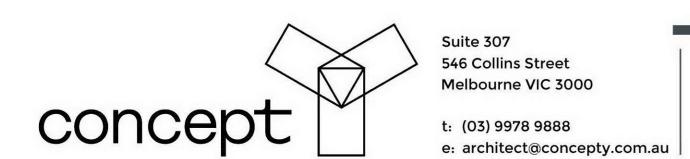

FOR DEVELOPMENT APPLICATION ONLY SUBJECT TO STATUTORY APPROVAL

© CONCEPT Y PTY LTD These drawings are subject to copyright and may not be copied, used or altered in any way without the expressed permission of Concept Y Pty Ltd. All areas and dimensions on drawings are approximate only and are subject to confirmation

 This concept plan is intended for Development Application purposes only. All setbacks, site coverage, car parking numbers, landscape areas and the like are subject to


statutory approval.


 No assurance is given as to the features, attributes, feasibility or accuracy of anything shown on or disclosed in this plan.


 All existing & proposed features, dimensions, areas and boundaries are approximate only and subject to verification via detailed site survey by licensed surveyor.

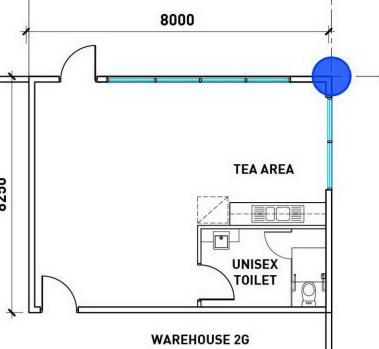
LEGEND Total Area Compliant Area

FOR DEVELOPMENT APPLICATION ONLY SUBJECT TO STATUTORY APPROVAL

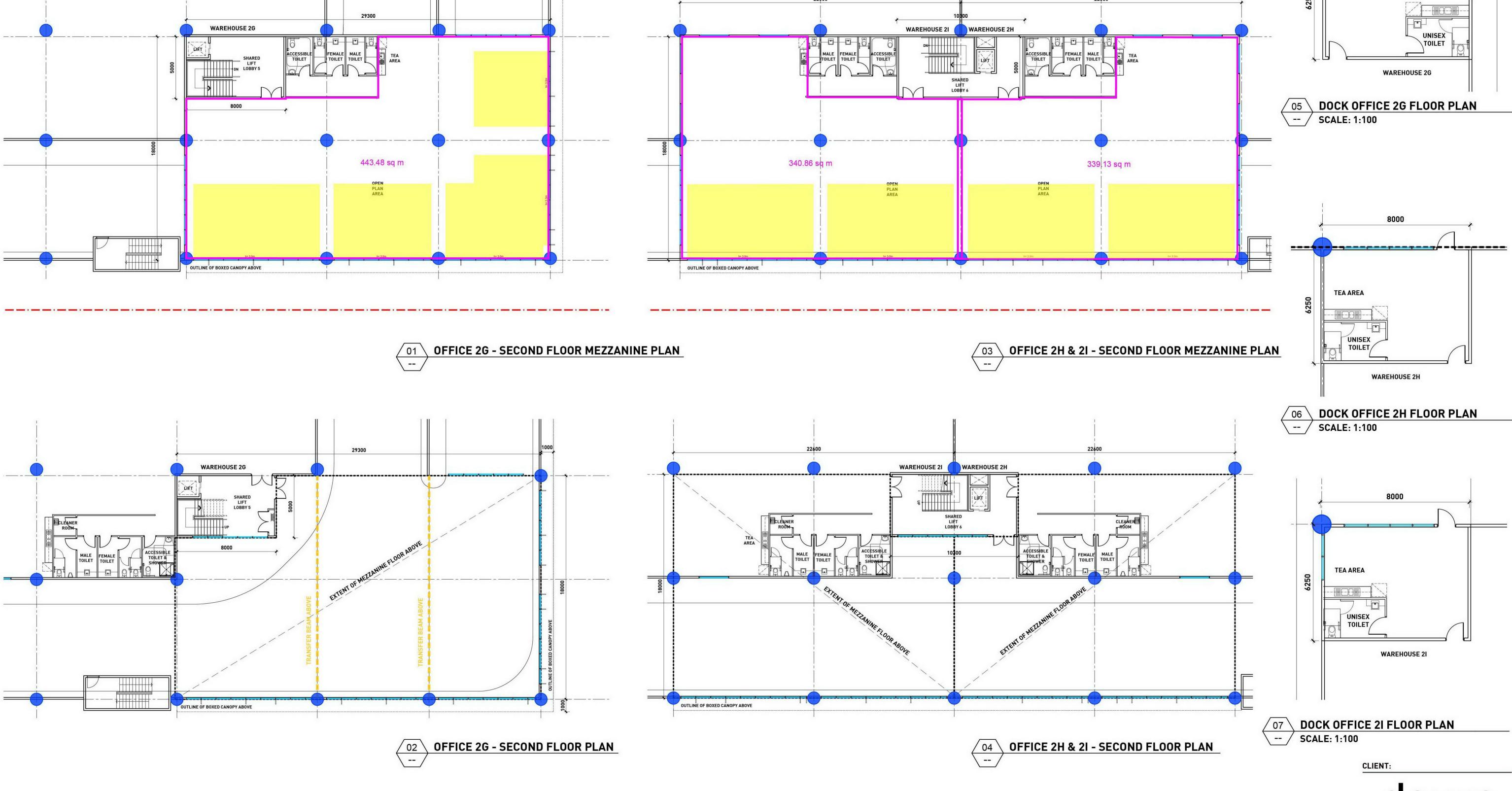
PROPOSED DEVELOPMENT

© CONCEPT Y PTY LTD

These drawings are subject to copyright and may not be copied, used or altered in any way without the expressed permission of Concept Y Pty Ltd. All areas and dimensions on drawings are approximate only and are subject to confirmation


y

This concept plan is intended for Development Application purposes only. All setbacks, site coverage, car parking numbers, landscape areas and the like are subject to statutory approval.


 No assurance is given as to the features, attributes, feasibility or accuracy of anything shown on or disclosed in this plan.

 All existing & proposed features, dimensions, areas and boundaries are approximate only and subject to verification via detailed site survey by licensed surveyor. LEGEND
Total Area
Compliant Area

FOR DEVELOPMENT
APPLICATION ONLY
SUBJECT TO STATUTORY APPROVAL

dexus

Appendix D Paints, Adhesives and Sealants

The following TVOC limits are applicable to all internal applications of all types of paints, adhesives or sealants applied on-site, including both exposed and concealed applications. If exterior grade products are used in an internal application, then these must also meet the requirements.

The following items are excluded from this credit:

- > Glazing film, tapes, and plumbing pipe cements.
- > Products used in car park.
- Paints, adhesives, and sealants used off-site, for example applied to furniture items in a manufacturing site and later installed in the fit out; and
- Adhesives and mastics used for temporary formwork and other temporary installations.

Product Type	Maximum TVOC Content (g/litre of ready to use product)
General purpose adhesive and sealants	50
Interior wall and ceiling paints, all sheen levels	16
Trim, varnishes and wood stains	75
Primers, sealers and prep coats	65
One and two pack performance coatings for floors	140
Acoustic sealants, architectural sealant, waterproofing membranes and sealants, fire retardant sealants and adhesives	250
Structural glazing adhesive, wood flooring and laminate adhesives and sealants	100
Ultra-Low VOC paints	5

Further, carpets used in the project must either be:

- Certified under a recognised Product Certification Scheme (listed on the GBCA website) or other recognised standards; or
- Compliant with the Total VOC (TVOC) limits specified in the table below.

Product Type	Maximum TVOC Content (g/litre of ready to use product)
ASTM D5116 – Total VOC limit	0.5mg/m2 per hour
ASTM D5116 – 4-PC (4 – Phenylcyclohexene)	0.05mg/m2 per hour
ISO 16000 / EN 13419 – TVOC at three days	0.5mg/m2 per hour
ISO 10580 / ISO/TC 219 (Document N238) – TVOC at 24 hours	0.5mg/m2 per hour

Appendix E Engineered Wood Products

The term "engineered wood products" includes composite wood products and includes raw/ unfinished as well as finished products. Items not covered by these limits include products used in exterior applications, formwork, internal car park applications, re-used products, and raw timber. All emission levels must be established by a NATA or ISO/IEC 17025 registered laboratory as per the testing methodologies in the table above.

Test Protocol	Emission Limit / Unit of Measurement
AS/NZS 2269:2004, testing procedure AS/NZS 2098.11:2005 method 10 for Plywood	≤1.0 mg/L
AS/NZS 1859.1:2004 - Particle Board, with use of testing procedure AS/NZS 4266.16:2004 method 16	≤1.5 mg/L
AS/NZS 1859.2:2004 - MDF, with use of testing procedure AS/NZS 4266.16:2004 method 16	≤1.0 mg/L
AS/NZS 4357.4 – Laminated Veneer Lumber (LVL)	≤1.0 mg/L
Japanese Agricultural Standard MAFF Notification No.701 Appendix Clause 3 (11) - LVL	≤1.0 mg/L
JIS A 5908:2003 - Particle Board and Plywood, with use of testing procedure JIS A 1460	≤1.0 mg/L
JIS A 5905:2003 - MDF, with use of testing procedure JIS A 1460	≤1.0 mg/L
JIS A1901 (not applicable to Plywood, applicable to high pressure laminates and compact laminates)	≤0.1 mg/ m²hr
ASTM D5116 (applicable to high pressure laminates and compact laminates)	≤0.1mg/m²hr
ISO 16000 part 9, 10 and 11 (also known as EN 13419), applicable to high pressure laminates and compact laminates	≤0.1 mg/m²hr (at 3 days)
ASTM D6007	≤0.12mg/m³**
ASTM E1333	≤0.12mg/m³***
EN 717-1 (also known as DIN EN 717-1)	≤0.12 mg/m³
EN 717-2 (also known as DIN EN 717-2)	≤3.5 mg/m²hr

^{**}The test report must confirm that the conditions of this table comply for the particular wood product type, the final results must be presented in EN 717-1 equivalent (as presented in the table) using the correlation ratio of 0.98.

^{***} The results must be presented in EN 717-1 equivalent (as presented in the table), using the correlation ratio of 0.98.

Creating great environments with great people

Melbourne Level 11, 60 Albert Road South Melbourne VIC 3205 T. 03 9521 1195 Sydney Level 3, 8 Spring Street Sydney NSW 2000 τ. 02 8203 5447 Brisbane Level 16, 15 Adelaide Street Brisbane QLD 4000 T. 07 3088 4022

adpconsulting.com.au